# User guide¶

## Rings library structure¶

Rings has the following main components:

• rings.bigint
arbitrary precision integers (fork of tbuktu/bigint)
• rings.primes
prime numbers including prime factorization, primality test etc.
• rings.poly.univar
univariate polynomials and algorithms with them including GCD and factorization
• rings.poly.multivar
multivariate polynomials and algorithms with them including GCD, factorization, Gröbner basis etc.
• rings.io
methods for parsing/stringifying mathematical expressions
• rings.scaladsl
Scala wrappers and syntax definitions for Rings

Examples in this user guide require some imports to be in the scope. The following code snippet includes all possible imports that may be required to run examples:

import cc.redberry.rings
import rings.{bigint, primes, poly}
import rings.poly.{univar, multivar}
import rings.scaladsl._
import syntax._

import cc.redberry.rings.*
import cc.redberry.rings.poly.*
import cc.redberry.rings.poly.univar.*
import cc.redberry.rings.poly.multivar.*

import static cc.redberry.rings.poly.PolynomialMethods.*
import static cc.redberry.rings.Rings.*


## Numbers¶

### Integers¶

There are two basic types of integer numbers that we have to deal with when doing algebra in computer: machine integers and arbitrary-precision integers. For the machine integers the Java’s primitive 64-bit long type is used (since most modern CPUs are 64-bit). Internally Rings uses machine numbers for representation of integers modulo prime numbers less than $$2^{64}$$ which is done for performance reasons (see Modular arithmetic with machine integers). For the arbitrary-precision integers Rings uses improved BigInteger class github.com/tbuktu/bigint (rings.bigint.BigInteger) instead of built-in java.math.BigInteger. The improved BigInteger has Schönhage-Strassen multiplication and Barrett division algorithms for large integers which is a significant performance improvement in comparison to native Java’s implementation.

Tip

In order to avoid confusing of BigInteger used in Rings and java.math.BigInteger it is convenient to instantiate arbitrary-precision integers via methods provided in ring Z.

In Java:

BigInteger fromString = Z.parse("12345689");
BigInteger fromInt    = Z.valueOf(12345689);
BigInteger fromLong   = Z.valueOf(1234568987654321L);


In Scala:

val fromString : IntZ = Z("12345689")
val fromInt    : IntZ = Z(12345689)
val fromLong   : IntZ = Z(1234568987654321L)


(the type definition type IntZ = ring.bigint.BigInteger is introduced in Scala DSL)

Full API documentation

### Prime numbers¶

In many applications it is necessary to test primality of integer number (isPrime(number)) or to generate some prime numbers (nextPrime(number)). This is realized in the following two classes:

• SmallPrimes for numbers less than $$2^{32}$$. It uses Miller-Rabin probabilistic primality test for int type in such a way that result is always guaranteed (code is adapted from Apache Commons Math).
• BigPrimes for arbitrary large numbers. It switches between Pollard-Rho, Pollard-P1 and Quadratic Sieve algorithms for prime factorization and also uses probabilistic Miller-Rabin test and strong Lucas test for primality testing.

The following code snippet gives some illustrations:

int intNumber = 1234567;
// false
boolean primeQ = SmallPrimes.isPrime(intNumber);
// 1234577
int intPrime = SmallPrimes.nextPrime(intNumber);
// [127, 9721]
int[] intFactors = SmallPrimes.primeFactors(intNumber);

long longNumber = 12345671234567123L;
// false
primeQ = BigPrimes.isPrime(longNumber);
// 12345671234567149
long longPrime = BigPrimes.nextPrime(longNumber);
// [1323599, 9327350077]
long[] longFactors = BigPrimes.primeFactors(longNumber);

BigInteger bigNumber = Z.parse("321536584276145124691487234561832756183746531874567");
// false
primeQ = BigPrimes.isPrime(bigNumber);
// 321536584276145124691487234561832756183746531874827
BigInteger bigPrime = BigPrimes.nextPrime(bigNumber);
// [3, 29, 191, 797359, 1579057, 14916359, 1030298906727233717673336103]
List<BigInteger> bigFactors = BigPrimes.primeFactors(bigNumber);


Full API documentation

### Modular arithmetic with machine integers¶

One important implementation aspect concerns arithmetic in the ring $$Z_p$$ with $$p < 2^{64}$$, that is integer arithmetic modulo some machine number. Though it may be hidden from the user’s eye, arithmetic in this ring actually lies in the basis of the most part of fundamental algorithms and directly affects performance of nearly all computations. In contrast to $$Z_p$$ with arbitrary large characteristic, for characteristic that fits into 64-bit word one can use machine integers to significantly speed up basic math operations. On the CPU level the modulo operation is implemented via DIV instruction (integer division) which is known to be very slow: for example on the recent Intel Skylake architecture DIV has 20-80 times worse throughput than MUL instruction (see this report). Hopefully, arithmetic operations in $$Z_p$$ are done modulo a fixed modulus $$p$$ which allows to make some preconditioning on $$p$$ and reduce DIV operations to MUL. The idea is the following: given a fixed $$p$$ we compute once the value of $$magic = [2^n/p]$$ with a sufficiently large $$n$$ (so that magic is some non-zero machine number), and then for arbitrary integer $$a$$ we have $$[a/p] = (a \times magic)/2^n$$, so DIV instruction is replaced with one MUL and one SHIFT (division by a power of two is just a bitwise shift, very fast). The actual implementation in fact requires some more work to do (for details see Chapter 10 in Hacker’s Delight). Rings uses libdivide4j library for fast integer division with precomputation which is ported from the well known C/C++ libdivide library. With this precomputation the mod operation becomes several times faster than the native CPU instruction, which boosts the overall performance of many of Rings algorithms in more than 3 times.

The ring $$Z_p$$ with $$p < 2^{64}$$ is implemented in IntegersZp64 class (while IntegersZp implements $$Z_p$$ with arbitrary large characteristic). IntegersZp64 defines all arithmetic operations in $$Z_p$$:

// Z/p with p = 2^7 - 1 (Mersenne prime)
IntegersZp64 field = new IntegersZp64(127);
//     1000 = 111 mod 127
assert field.modulus(1000) == 111;
// 100 + 100 = 73 mod 127
assert field.add(100, 100) == 73;
//  12 - 100 = 39 mod 127
assert field.subtract(12, 100) == 39;
//  55 * 78  = 73 mod 127
assert field.multiply(55, 78) == 99;
//   1 / 43  = 65 mod 127
assert field.reciprocal(43) == 65;


It is worst to mention, that multiplication defined in IntegersZp64 is especially fast when characteristic is less than $$2^{32}$$: in this case multiplication of two numbers fits the machine 64-bit word (no long overflow), while in the opposite case Montgomery reduction will be used:

// Z/p with p = 2^31 - 1 (Mersenne prime) - fits 32-bit word
IntegersZp64 field32 = new IntegersZp64((1L << 31) - 1L);
// does not cause long overflow - fast
assert field32.multiply(0xabcdef12, 0x12345678) == 0x7e86a4d6;

// Z/p with p = 2^61 - 1 (Mersenne prime) - doesn't fit 32-bit word
IntegersZp64 field64 = new IntegersZp64((1L << 61) - 1L);
// cause long overflow - Montgomery reduction will be used - not so fast
assert field64.multiply(0x0bcdef1234567890L, 0x0234567890abcdefL) == 0xf667077306fd7a8L;


Full API documentation

## Rings¶

The concept of mathematical ring is implemented in the generic interface Ring<E> which defines all basic algebraic operations over the elements of type E. The simplest example is the ring of integers $$Z$$ (Z), which operates with Rings BigInteger instances and simply delegates all operations like + or * to methods of class BigInteger. A little bit more complicated ring is a ring of integers modulo some number ($$Z_p$$):

// The ring Z/17
Ring<BigInteger> ring = Zp(Z.valueOf(17));

//     103 = 1 mod 17
BigInteger el  = ring.valueOf(Z.valueOf(103));
assert  el.intValue() == 1;

// 99 + 88 = 0 mod 17
BigInteger add = ring.add(Z.valueOf(99),
Z.valueOf(88));
assert add.intValue() == 0;

// 99 * 77 = 7 mod 17
BigInteger mul = ring.multiply(Z.valueOf(99),
Z.valueOf(77));
assert mul.intValue() == 7;

// 1  / 99 = 11 mod 17
BigInteger inv = ring.reciprocal(Z.valueOf(99));
assert inv.intValue() == 11;


The interface Ring<E> additionally defines algebraic operations inherent to more specialized types of rings:

• GCD domains
rings that support GCD operation
• Euclidean rings
rings that support division with remainder
• Fields
rings that support exact division

These operations can be summarized in the following methods from Ring<E> interface:

// Methods from Ring<E> interface:

// GCD domain operation:
E gcd(E a, E b);

// Euclidean ring operation:
E[] divideAndRemainder(E dividend, E divider);

// Field operation:
E reciprocal(E element);


One can check whether the ring R is a field or a Euclidean ring using R.isField() and R.isEuclideanRing() methods.

Important

If one invoke field method like reciprocal(el) on a ring which is not a field, the UnsupportedOperationException will be thrown:

// ring Z
Ring<BigInteger> notField = Z;
// it is not a fielf
assert !notField.isField();
// this is OK (1/1 = 1)
assert notField.reciprocal(Z.getOne()).isOne();
// this will throw UnsupportedOperationException
notField.reciprocal(Z.valueOf(10)); // <- error


Each Ring<E> implementation provides the information about its mathematical nature and its properties like cardinality, characteristic etc. Another important method defined in Ring<E> is parse(String) which converts string into ring element. Illustrations:

// Z is not a field
assert  Z.isEuclideanRing();
assert !Z.isField();
assert !Z.isFinite();

// Q is an infinite field
assert  Q.isField();
assert !Q.isFinite();
assert  Q.parse("2/3").equals(
new Rational<>(Z, Z.valueOf(2), Z.valueOf(3)));

// GF(2^10) is a finite field
FiniteField<UnivariatePolynomialZp64> gf = GF(2, 10);
assert gf.isField();
assert gf.isFinite();
assert gf.characteristic().intValue() == 2;
assert gf.cardinality().intValue() == 1 << 10;
System.out.println(gf.parse("1 + z + z^10"));

// Z/3[x] is Euclidean ring but not a field
UnivariateRing<UnivariatePolynomialZp64> zp3x = UnivariateRingZp64(3);
assert  zp3x.isEuclideanRing();
assert !zp3x.isField();
assert !zp3x.isFinite();
assert  zp3x.characteristic().intValue() == 3;
assert  zp3x.parse("1 + 14*x + 15*x^10").equals(
UnivariatePolynomialZ64.create(1, 2).modulus(3));


Finally, each Ring<E> implementation provides a set of high-level methods for GCDs, factorization etc. Below is the summary of main Ring<E> methods:

Method from Ring<E> Description
add(a, b) Ring addition
subtract(a, b) Ring subtraction
multiply(a, b) Ring multiplication
isEuclideanRing() Whether ring supports division with remainder
divideAndRemainder(a, b) Division with remainder (for Euclidean rings)
isField() Whether ring is a field
reciprocal(a) Multiplicative inverse (for fields)
getOne() Identity element under multiplication
getZero() Identity element under addition
characteristic() Ring characteristic
cardinality() Ring cardinality
parse(string) Parse ring element from string
randomElement() Pick some random ring element
gcd(a, b) Greatest common divisor of two elements
factor(a) Unique factor decomposition of ring element
factorSquareFree(a) Square free decomposition of ring element

Full API documentation

### List of built-in rings¶

Basic rings and factory methods for constructing new rings are placed in Rings class (Java) or directly in scaladsl package object (Scala). Below is the list of what is available by default in Rings:

Ring Description Method in Rings / scaladsl
$$Z$$ Ring of integers Z
$$Q$$ Field of rationals Q
$$Z(i)$$ Ring of complex integers GaussianIntegers
$$Q(i)$$ Field of complex rationals GaussianRationals
$$Z_p$$ Integers modulo $$p$$ Zp(p)
$$Z_p$$ with $$p < 2^{64}$$ Integers modulo $$p < 2^{64}$$ Zp64(p) [*]
$$GF(p^q)$$ Galois field with cardinality $$p^q$$ GF(p, q) and GF(irred) or GF(p, q, var) and GF(irred, var) in Scala
$$F(\alpha)$$ Algebraic number field as simple field extension AlgebraicNumberField(minPoly) and AlgebraicNumberField(minPoly, var) in Scala
$$F(\alpha_1, \dots, \alpha_s)$$ Algebraic number field as multilpe field extension MultipleFieldExtension(generators) and MultipleFieldExtension(generators, vars) in Scala
$$Frac(R)$$ Field of fractions of an integral domain $$R$$ Frac(R)
$$R[x]$$ Univariate polynomial ring over coefficient ring $$R$$ UnivariateRing(R) or UnivariateRing(R, var) in Scala
$$Z_p[x]$$ with $$p < 2^{64}$$ Univariate polynomial ring over coefficient ring $$Z_p$$ with $$p < 2^{64}$$ UnivariateRingZp64(p) or UnivariateRingZp64(p, var) in Scala
$$R[x_1, \dots, x_N]$$ Multivariate polynomial ring with exactly $$N$$ variables over coefficient ring $$R$$ MultivariateRing(N, R) or MultivariateRing(R, vars) in Scala
$$Z_p[x_1, \dots, x_N]$$ with $$p < 2^{64}$$ Multivariate polynomial ring with exactly $$N$$ variables over coefficient ring $$Z_p$$ with $$p < 2^{64}$$ MultivariateRingZp64(N, p) or MultivariateRingZp64(p, vars) in Scala
$$R[x_1, \dots, x_N]/I$$ Multivariate quotient ring QuotientRing(baseRing, ideal)
 [*] Class IntegersZp64 which represents $$Z_p$$ with $$p < 2^{64}$$ does not inherit Ring interface (see Modular arithmetic with machine integers)

Full API documentation

### Galois fields¶

Galois fields $$GF(p^q)$$ with prime characteristic $$p$$ and cardinality $$p^q$$ are implemented as simple field extensions (that is univariate quotient rings $$Z_p[x]/\langle m(x) \rangle$$ where $$m(x)$$ is irreducible minimal polynomial of degree $$q$$). One can create Galois field by specifying $$p$$ and $$q$$ in which case the minimal polynomial will be generated automatically or by explicitly specifying it:

// Galois field GF(7^10) represented by univariate polynomials
// in variable "z" over Z/7 modulo some irreducible polynomial
// (irreducible polynomial will be generated automatically)
val gf7_10 = GF(7, 10, "z")
assert(gf7_10.characteristic == Z(7))
assert(gf7_10.cardinality == Z(7).pow(10))

// GF(7^3) generated by irreducible polynomial "1 + 3*z + z^2 + z^3"
val gf7_3 = GF(UnivariateRingZp64(7, "z")("1 + 3*z + z^2 + z^3"), "z")
assert(gf7_3.characteristic == Z(7))
assert(gf7_3.cardinality == Z(7 * 7 * 7))

// Galois field GF(7^10)
// (irreducible polynomial will be generated automatically)
FiniteField<UnivariatePolynomialZp64> gf7_10 = GF(7, 10);
assert gf7_10.characteristic().intValue() == 7;
assert gf7_10.cardinality().equals(Z.valueOf(7).pow(10));

// GF(7^3) generated by irreducible polynomial "1 + 3*z + z^2 + z^3"
FiniteField<UnivariatePolynomialZp64> gf7_3 = GF(UnivariatePolynomialZ64.create(1, 3, 1, 1).modulus(7));
assert gf7_3.characteristic().intValue() == 7;
assert gf7_3.cardinality().intValue() == 7 * 7 * 7;


Galois fields with arbitrary large characteristic are available:

// Mersenne prime 2^107 - 1
val characteristic = Z(2).pow(107) - 1
// Galois field GF((2^107 - 1) ^ 16)
implicit val field = GF(characteristic, 16, "z")

assert(field.cardinality() == characteristic.pow(16))

// Mersenne prime 2^107 - 1
BigInteger characteristic = Z.getOne().shiftLeft(107).decrement();
// Galois field GF((2^107 - 1) ^ 16)
FiniteField<UnivariatePolynomial<BigInteger>> field = GF(characteristic, 16);

assert(field.cardinality().equals(characteristic.pow(16)));


Implementation of Galois fields uses assymptotically fast algorithm for polynomial division with precomputed inverses via Newton iterations (see Univariate division with remainder).

Galois fields are implemented as simple field extensions, some corresponding methods may be of practical use (see the table in the next section).

Full API documentation

### Algebraic number fields and field extensions¶

There are two types of algebraic number fields implemented in Rings: simple extensions $$Q(\alpha)$$ and multiple extensions $$Q(\alpha_1, \dots, \alpha_s)$$. Arithmetic in simple extensions is always faster and multiple extensions can be always reduces to simple.

#### Simple field extensions¶

The base class for all simple field extensions is SimpleFieldExtension. In fact, both Galois fields (instances of FiniteField) and algebraic number fields (instances of AlgebraicNumberField) are derived from SimpleFieldExtension. Simple algebraic number field can be created by providing the minimal polynomial. Some examples with number fields:

// parse some minimal polynomial from string
val minimalPoly = UnivariateRing(Q, "x")("x^3 - 5")

// create algebraic number field generated by specified polynomial
// variable "r" represents the root of minimal polynomial
implicit val field = AlgebraicNumberField(minimalPoly, "r")
// just a shortcut for type of field elements
type Number = field.ElementType
val r = field("r")

// do some arithmetic in number field
val arith1 = (2 + r.pow(19) / 3).pow(3) - 1
// parse number elements
val arith2 = field("1 + r/(3 - r^7)^8 + r")
// assert that r is the root of X^3 - 5
assert(r.pow(3) == field(5))

// compute Norm of some algebraic number
val norm1 = field.norm(arith1)
// assert that norm is free of radicals
assert(field.isInTheBaseField(norm1))

// compute minimal polynomial of some other algebraic number
val mp = field.minimalPolynomial(arith2)
// assert that its degree the same
assert(mp.degree() == minimalPoly.degree())

// declare polynomial ring over algebraic numbers
implicit val ring = MultivariateRing(field, Array("x", "y", "z"))
val (x, y, z) = ring("x", "y", "z")

// create some polynomial over algebraic numbers
val poly: MultivariatePolynomial[Number] = ((x - r) * (y - r) * (z - r)).pow(2) - 1
// compute norm of poly, its coefficient ring is the base ring of algebraic extension
type BaseNumber = field.CoefficientType
val polyNorm: MultivariatePolynomial[BaseNumber] = field.normOfPolynomial(poly)

// factorize multivariate polynomial over algebraic number field
val factors = Factor(poly)
println(ring stringify factors)

// parse some minimal polynomial from string
UnivariatePolynomial<Rational<BigInteger>> minimalPoly = UnivariatePolynomial.parse("x^3 - 5", Q, "x");

// create algebraic number field generated by specified polynomial
// variable "r" represents the root of minimal polynomial
AlgebraicNumberField<UnivariatePolynomial<Rational<BigInteger>>> field = AlgebraicNumberField(minimalPoly);
UnivariatePolynomial<Rational<BigInteger>> r = field.generator();

// do some arithmetic in number field
UnivariatePolynomial<Rational<BigInteger>> arith1 = field.subtract(
field.pow(field.add(field.valueOf(2),
field.divideExact(field.pow(r, 19), field.valueOf(3))), 3),
field.valueOf(1));
// parse number elements
Coder<UnivariatePolynomial<Rational<BigInteger>>, ?, ?> coder = Coder.mkUnivariateCoder(field, "r");
UnivariatePolynomial<Rational<BigInteger>> arith2 = coder.parse("1 + r/(3 - r^7)^8 + r");
// assert that r is the root of X^3 - 5
assert field.pow(r, 3).equals(field.valueOf(5));

// compute Norm of some algebraic number
UnivariatePolynomial<Rational<BigInteger>> norm1 = field.norm(arith1);
// assert that norm is free of radicals
assert field.isInTheBaseField(norm1);

// compute minimal polynomial of some other algebraic number
UnivariatePolynomial<Rational<BigInteger>> mp = field.minimalPolynomial(arith2);
// assert that its degree the same
assert mp.degree() == minimalPoly.degree();

// declare polynomial ring over algebraic numbers
MultivariateRing<MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>> ring = MultivariateRing(3, field);
MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>
x = ring.variable(0),
y = ring.variable(1),
z = ring.variable(2);

// create some polynomial over algebraic numbers
// (note: polynomials x,y,z will be modified)
MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>> poly = ring.pow(
((x.subtract(r)).multiply(y.subtract(r)).multiply(z.subtract(r))), 2).decrement();
// compute norm of poly, its coefficient ring is the base ring of algebraic extension
MultivariatePolynomial<Rational<BigInteger>> polyNorm = field.normOfPolynomial(poly);

// factorize multivariate polynomial over algebraic number field
PolynomialFactorDecomposition<MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>> factors = Factor(poly);
System.out.println(factors);


The following table lists some important methods defined by SimpleFieldExtension:

Method Description
generator() Gives element $$\alpha$$ that generate this field $$F(\alpha)$$
isInThebaseField(el) Whether a given element belongs to the field $$F$$
getMinimalPolynomial() Returns minimal polynomial that generates field extension
norm(el) Computes the norm of element
conjugatesProduct(el) Computes the product of all conjugates of given element (excluding element itself)
trace(el) Computes the trace of algebraic number
normOfPolynomial(poly) Computes the norm of given polynomial over this field
minimalPolynomial(el) Computes the minimal polynomial of given element
asMultipleExtension() Transforms this extension to an instance of multiple field extension

The are special shortcuts for complex numbers:

// Gaussian integers (not a field)
val integers = GaussianIntegers

// Gaussian rationals
val rationals = GaussianRationals

// by default "i" is used for imaginary unit
// another symbol may be used as well
val otherSymbols : AlgebraicNumberField[Rational[IntZ]] = GaussianRationals("ImaginaryUnit")


Full API documentation

#### Multiple field extensions¶

Elements of multiple field extension $$F(\alpha_1, \dots, \alpha_s)$$ are represented as multivariate polynomials in $$\alpha_1, \dots, \alpha_s$$. Arithmetic in multiple field extensions is performed by switching to isomorphic simple field extension $$F(\gamma)$$, where $$\gamma$$ is a primitive element of field extension (some linear combination $$\gamma = \sum c_i \alpha_i$$). Primitive element and expressions for generators $$\alpha_1, \dots, \alpha_s$$ in terms of primitive element are always computed automatically in Rings.

The standard way for creating multiple field extensions is to start with the first algebraic element $$\alpha_1$$ and then sequentially add element by element:

import syntax._
// the first algebraic element is given by its minimal polynomial in Q[x]
val minPoly1 = UnivariatePolynomial(3, 0, 0, 1)(Q)
// create initial field extension Q(alpha1)
implicit var field = MultipleFieldExtension(minPoly1, "alpha1")
var alpha1 = field("alpha1")

// create minimal polynomial for second algebraic number
// it may have coefficients from algebraic number field Q(alpha1)
val minPoly2 = UnivariatePolynomial(alpha1, field(3), alpha1.pow(2))
// assert that minimal polynomial is irreducible
assert(Factor(minPoly2).isTrivial)

// join alpha2 to field extension
// that is field is now Q(alpha1, alpha2)
field = field.joinAlgebraicElement(minPoly2, "alpha2")
alpha1 = field("alpha1") // cast alpha1 to updated field
var alpha2 = field("alpha2")

// create minimal polynomial for third algebraic number
// it may have coefficients from algebraic number field Q(alpha1, alpha2)
val minPoly3 = UnivariatePolynomial(field(2), alpha1 + alpha2, field(4), field(1))
// assert that minimal polynomial is irreducible
assert(Factor(minPoly3).isTrivial)

// join alpha3 to field extension
// that is field is now Q(alpha1, alpha2, alpha3)
field = field.joinAlgebraicElement(minPoly3, "alpha3")
alpha1 = field("alpha1") // cast alpha1 to updated field
alpha2 = field("alpha2") // cast alpha2 to updated field
var alpha3 = field("alpha3")

// field has three "variables": alpha1, alpha2, alpha3
assert(field.nVariables() == 3)

// check the degree of obtained field extension:
println(field.degree())

// do some arithmetic in multiple extension (this is typically
// quite slow and expressions are quire large)
val el1 = (alpha1 + alpha2 - alpha3 / 17).pow(2) - 1 / alpha2
// parse from string
val el2 = field("(-alpha1 - alpha2 + alpha3/17)^2 - 1/alpha2")
assert(el1 - el2 == field(0))

// the first algebraic element is given by its minimal polynomial in Q[x]
UnivariatePolynomial<Rational<BigInteger>> minPoly1 =
UnivariatePolynomial
.create(3, 0, 0, 1)
.mapCoefficients(Q, Q::mkNumerator);
// create initial field extension Q(alpha1)
MultipleFieldExtension<
Monomial<Rational<BigInteger>>,
MultivariatePolynomial<Rational<BigInteger>>,
UnivariatePolynomial<Rational<BigInteger>>
> field = MultipleFieldExtension.mkMultipleExtension(minPoly1);

MultivariatePolynomial<Rational<BigInteger>> alpha1, alpha2, alpha3;
alpha1 = field.variable(0);
// create minimal polynomial for second algebraic number
// it may have coefficients from algebraic number field Q(alpha1)
UnivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>> minPoly2 =
UnivariatePolynomial.create(field, alpha1, field.valueOf(3), field.pow(alpha1, 2));

// assert that minimal polynomial is irreducible
assert IrreduciblePolynomials.irreducibleQ(minPoly2);

// join alpha2 to field extension
// that is field is now Q(alpha1, alpha2)
field = field.joinAlgebraicElement(minPoly2);
alpha1 = field.variable(0);
alpha2 = field.variable(1);

// create minimal polynomial for third algebraic number
// it may have coefficients from algebraic number field Q(alpha1, alpha2)
UnivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>> minPoly3 =
UnivariatePolynomial.create(field, field.valueOf(2), field.add(alpha1, alpha2), field.valueOf(4), field.valueOf(1));
// assert that minimal polynomial is irreducible
assert IrreduciblePolynomials.irreducibleQ(minPoly3);

// join alpha3 to field extension
// that is field is now Q(alpha1, alpha2, alpha3)
field = field.joinAlgebraicElement(minPoly3);
alpha1 = field.variable(0); // cast alpha1 to updated field
alpha2 = field.variable(1); // cast alpha2 to updated field
alpha3 = field.variable(2);

// field has three "variables": alpha1, alpha2, alpha3
assert field.nVariables() == 3;
// check the degree of obtained field extension:
System.out.println(field.degree());

// do some arithmetic in multiple extension (this is typically
// quite slow and expressions are quire large)
MultivariatePolynomial<Rational<BigInteger>> el1 = field.subtract(
field.pow(field.add(alpha1, alpha2, field.negate(field.divideExact(alpha3, field.valueOf(17L)))), 2),
field.reciprocal(alpha2));
Coder<MultivariatePolynomial<Rational<BigInteger>>, ?, ?> coder = Coder.mkMultipleExtensionCoder(field, "alpha1", "alpha2", "alpha3");
// parse from string
MultivariatePolynomial<Rational<BigInteger>> el2 = coder.parse("(-alpha1 - alpha2 + alpha3/17)^2 - 1/alpha2");
assert field.subtract(el1, el2).isZero();


Arithmetic performed directly in multiple field extension may be quite slow since it implies lots of conversions to and conversions back (both quite costly) from equivalent simple field extension generated by primitive element. So, in practice it is always better to perform all arithmetic in the equivalent simple field extension, and convert to multiple only the very final result:

// create multivariate polynomial ring over multiple field extension
// Q(alpha1, alpha2, alpha3)[x,y,z] and perform some arithmetic
// this will will be typically quite slow
val pmRing = MultivariateRing(field, Array("x", "y", "z"))
val (t1, thePoly1) = timing { pmRing("((x - alpha1 - alpha2) * (y - alpha1 - alpha3) * (z - alpha2 - alpha3))^2 - 1") }

// create the same multivariate ring, but using the isomorphic
// simple field extension Q(gamma) = Q(alpha1, alpha2, alpha3)
val simpleCfField = field.getSimpleExtension("gamma")
//  multivariate ring Q(gamma)[x,y,z]
val psRing = MultivariateRing(simpleCfField, Array("x", "y", "z"))
val (t2, thePoly2_) = timing { psRing("((x - alpha1 - alpha2) * (y - alpha1 - alpha3) * (z - alpha2 - alpha3))^2 - 1") }
// convert polynomial Q(gamma)[x,y,z] to Q(alpha1, alpha2, alpha3)[x,y,z]
// by substituting gamma = primitive_element (combination of alpha's)
val thePoly2 = thePoly2_.mapCoefficients(field, p => field.valueOf(p.composition(field.getPrimitiveElement)))

// polynomials are equal, however arithmetic in simple
// extension is orders of magnitude faster
assert(thePoly2 == thePoly1)
println(s"Arithmetic in multiple extension: $t1") println(s"Arithmetic in simple extension:$t2")

// create multivariate polynomial ring over multiple field extension
// Q(alpha1, alpha2, alpha3)[x,y,z] and perform some arithmetic
// this will will be typically quite slow
MultivariateRing<MultivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>>> pmRing = MultivariateRing(3, field);
Coder<MultivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>>, ?, ?> pmCoder =
Coder.mkMultivariateCoder(pmRing, coder, "x", "y", "z");
long t1 = System.currentTimeMillis();
MultivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>> thePoly1 = pmCoder.parse("((x - alpha1 - alpha2) * (y - alpha1 - alpha3) * (z - alpha2 - alpha3))^2 - 1");
t1 = System.currentTimeMillis() - t1;

// create the same multivariate ring, but using the isomorphic
// simple field extension Q(gamma) = Q(alpha1, alpha2, alpha3)
SimpleFieldExtension<UnivariatePolynomial<Rational<BigInteger>>> simpleCfField = field.getSimpleExtension();
Coder<UnivariatePolynomial<Rational<BigInteger>>, ?, ?> simpleCoder = Coder.mkUnivariateCoder(simpleCfField, "gamma");
simpleCoder.bindAlias("alpha1", field.getGeneratorRep(0));
simpleCoder.bindAlias("alpha2", field.getGeneratorRep(1));
simpleCoder.bindAlias("alpha3", field.getGeneratorRep(2));
//  multivariate ring Q(gamma)[x,y,z]
MultivariateRing<MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>> psRing = MultivariateRing(3, simpleCfField);
Coder<MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>>, ?, ?> psCoder = Coder.mkMultivariateCoder(psRing, simpleCoder, "x", "y", "z");

final MultipleFieldExtension<Monomial<Rational<BigInteger>>, MultivariatePolynomial<Rational<BigInteger>>, UnivariatePolynomial<Rational<BigInteger>>> f = field;
long t2 = System.currentTimeMillis();
MultivariatePolynomial<UnivariatePolynomial<Rational<BigInteger>>> thePoly2_ = psCoder
.parse("((x - alpha1 - alpha2) * (y - alpha1 - alpha3) * (z - alpha2 - alpha3))^2 - 1");
t2 = System.currentTimeMillis() - t2;
// convert polynomial Q(gamma)[x,y,z] to Q(alpha1, alpha2, alpha3)[x,y,z]
// by substituting gamma = primitive_element (combination of alpha's)
MultivariatePolynomial<MultivariatePolynomial<Rational<BigInteger>>> thePoly2 = thePoly2_
.mapCoefficients(field, p -> f.valueOf(p.composition(f.getPrimitiveElement())));

// polynomials are equal, however arithmetic in simple
// extension is orders of magnitude faster
assert thePoly2.equals(thePoly1);
System.out.println("Arithmetic in multiple extension: " + t1 + "ms");
System.out.println("Arithmetic in simple extension: " + t2 + "ms");


The following table lists some important methods defined by MultipleFieldExtension:

Method Description
variable(i) Gives i-th generating algebraic number represented as element of this
degree() Gives the degree of this finite extension
getPrimitiveElement() Returns the primitive element represented as a linear combination of generators
getSimpleExtension() Gives the isomorphic simple field extension generated by primitive element
getGeneratorMinimalPoly(i) Returns minimal polynomial of i-th element represented as polynomial over i-th extension field in extension tower
getSubExtension(i) Returns i-th nested extension (that is extension generated by the first i generators)
getGeneratorRep(i) Gives representation of i-th generator as element of equivalent simple field extension generated by primitive element
joinAlgebraicElement(poly) Joins algebraic element represented by given minimal poly and returns the result

A special type of multiple field extenions is splitting fields. Rings implements method for creating splitting fields:

// some irreducible polynomial
val poly = UnivariateRing(Q, "x")("17*x^3 - 14*x^2 + 25*x +  15")
// create splitting field as multiple field extension
// s1,s2,s3 are roots of specified poly
implicit val field = SplittingField(poly, Array("s1", "s2", "s3"))
// check the degree of this extension (6 = 3!)
assert(6 == field.getSimpleExtension().degree())

// assert Vieta's identities
val (s1, s2, s3) = field("s1", "s2", "s3")
assert(s1 * s2 * s3 == field("-15/17"))
assert(s1 * s2 + s1 * s3 + s2 * s3 == field("25/17"))
assert(s1 + s2 + s3 == field("14/17"))

UnivariateRing<UnivariatePolynomial<Rational<BigInteger>>> auxRing = UnivariateRing(Q);
Coder<UnivariatePolynomial<Rational<BigInteger>>, ?, ?> auxCoder = Coder.mkPolynomialCoder(auxRing, "x");

// some irreducible polynomial
UnivariatePolynomial<Rational<BigInteger>> poly = auxCoder.parse("17*x^3 - 14*x^2 + 25*x +  15");
// create splitting field as multiple field extension
// s1,s2,s3 are roots of specified poly
MultipleFieldExtension<
Monomial<Rational<BigInteger>>,
MultivariatePolynomial<Rational<BigInteger>>,
UnivariatePolynomial<Rational<BigInteger>>
>
splittingField = MultipleFieldExtension.mkSplittingField(poly);
// check the degree of this extension (6 = 3!)
assertEquals(6, splittingField.getSimpleExtension().degree());

// assert Vieta's identities
Coder<MultivariatePolynomial<Rational<BigInteger>>, ?, ?> coder = Coder.mkPolynomialCoder(splittingField, "s1", "s2", "s3");
assert coder.parse("s1 * s2 * s3").equals(coder.parse("-15/17"));
assert coder.parse("s1 * s2  +  s1 * s3 + s2 * s3").equals(coder.parse("25/17"));
assert coder.parse("s1 + s2 + s3").equals(coder.parse("14/17"));


Important

Arithmetic performed directly in multiple field extension may be quite slow since it implies lots of conversions to and conversions back (both quite costly) from equivalent simple field extension generated by primitive element. So, in practice it is always better to perform all arithmetic in the equivalent simple field extension (via getSimpleExtension()), and convert to multiple only the very final result (via getPrimitiveElement()).

Full API documentation

### Fields of fractions¶

Field of fractions can be defined over any GCD ring $$R$$. The simplest example is the field $$Q$$ of fractions over $$Z$$:

implicit val field = Frac(Z) // the same as Q

assert( field("13/6") == field("2/3") + field("3/2") )
assert( field("5/6")  == field("2/3") + field("1/6") )

Rationals<BigInteger> field = Frac(Z); // the same as Q

assert field.parse("13/6")
.equals(field.add(field.parse("2/3"),
field.parse("3/2")));

assert field.parse("5/6")
.equals(field.add(
field.parse("2/3"),
field.parse("1/6")));


The common GCD is automatically canceled in the numerator and denominator. Another illustration: field $$Frac(Z[x, y, z])$$ of rational functions over $$x$$, $$y$$ and $$z$$:

val ring = MultivariateRing(Z, Array("x", "y", "z"))
implicit val field = Frac(ring)

val a = field("(x + y + z)/(1 - x - y)")
val b = field("(x^2 - y^2 + z^2)/(1 - x^2 - 2*x*y - y^2)")

println(a + b)

Ring<MultivariatePolynomial<BigInteger>> ring = MultivariateRing(3, Z);
Ring<Rational<MultivariatePolynomial<BigInteger>>> field = Frac(ring);

Rational<MultivariatePolynomial<BigInteger>>
a = field.parse("(x + y + z)/(1 - x - y)"),
b = field.parse("(x^2 - y^2 + z^2)/(1 - x^2 - 2*x*y - y^2)");

System.out.println(field.add(a, b));


Full API documentation

### Rational function arithmetic¶

Since it is often used in practice, it is worth to put examples with the field of rational functions in a separate section, though this is just a particular case of generic field of fractions. Field of rational functions is defined as $$Frac(Z[\vec X])$$. The below example llustrates how to parse elements of the field $$Frac(Z[x,y,z])$$ from strings, do basic and advanced math operations in it:

// Frac(Z[x,y,z])
implicit val field = Frac(MultivariateRing(Z, Array("x", "y", "z")))

// parse some math expression from string
// it will be automatically reduced to a common denominator
// with the gcd being automatically cancelled
val expr1 = field("(x/y/(x - z) + (x + z)/(y - z))^2 - 1")

// do some math ops programmatically
val (x, y, z) = field("x", "y", "z")
val expr2 = expr1.pow(2) + x / y - z

// bind expr1 and expr2 to variables to use them further in parser
field.coder.bind("expr1", expr1)
field.coder.bind("expr2", expr2)

// parse some complicated expression from string
// it will be automatically reduced to a common denominator
// with the gcd being automatically cancelled
val expr3 = field(
"""
expr1 / expr2 - (x*y - z)/(x-y)/expr1
+ x / expr2 - (x*z - y)/(x-y)/expr1/expr2
+ x^2*y^2 - z^3 * (x - y)^2
""")

// export expression to string
println(field.stringify(expr3))

// take numerator and denominator
val num = expr3.numerator()
val den = expr3.denominator()
// common GCD is always cancelled automatically
assert( field.ring.gcd(num, den).isOne )

// compute unique factor decomposition of expression
val factors = field.factor(expr3)
println(field.stringify(factors))

MultivariateRing<MultivariatePolynomial<BigInteger>> ring = MultivariateRing(3, Z);
Rationals<MultivariatePolynomial<BigInteger>> field = Frac(ring);

// Parser/stringifier of rational functions
Coder<Rational<MultivariatePolynomial<BigInteger>>, ?, ?> coder
= Coder.mkRationalsCoder(
field,
Coder.mkMultivariateCoder(ring, "x", "y", "z"));

// parse some math expression from string
// it will be automatically reduced to a common denominator
// with the gcd being automatically cancelled
Rational<MultivariatePolynomial<BigInteger>> expr1 = coder.parse("(x/y/(x - z) + (x + z)/(y - z))^2 - 1");

// do some math ops programmatically
Rational<MultivariatePolynomial<BigInteger>>
x = new Rational<>(ring, ring.variable(0)),
y = new Rational<>(ring, ring.variable(1)),
z = new Rational<>(ring, ring.variable(2));

Rational<MultivariatePolynomial<BigInteger>> expr2 = field.add(
field.pow(expr1, 2),
field.divideExact(x, y),
field.negate(z));

// bind expr1 and expr2 to variables to use them further in parser
coder.bind("expr1", expr1);
coder.bind("expr2", expr2);

// parse some complicated expression from string
// it will be automatically reduced to a common denominator
// with the gcd being automatically cancelled
Rational<MultivariatePolynomial<BigInteger>> expr3 = coder.parse(
" expr1 / expr2 - (x*y - z)/(x-y)/expr1"
+ " + x / expr2 - (x*z - y)/(x-y)/expr1/expr2"
+ "+ x^2*y^2 - z^3 * (x - y)^2");

// export expression to string
System.out.println(coder.stringify(expr3));

// take numerator and denominator
MultivariatePolynomial<BigInteger> num = expr3.numerator();
MultivariatePolynomial<BigInteger> den = expr3.denominator();

// common GCD is always cancelled automatically
assert field.ring.gcd(num, den).isOne();

// compute unique factor decomposition of expression
FactorDecomposition<Rational<MultivariatePolynomial<BigInteger>>> factors = field.factor(expr3);
System.out.println(factors.toString(coder));


Tip

One can use both $$Frac(Z[\vec X])$$ and $$Frac(Q[\vec X])$$ to represent field of rational functions. In the latter case, numeric denominators will be absorbed in polynomial coefficients, while in the former the common numeric denominator will be always factored out (so all polynomials will have only integer coefficients). From the mathematical point of view, there is no difference, while from the implementation point of view arithmetic in $$Frac(Z[\vec X])$$ will be always faster since it avoids unnecessary conversions from $$Q[\vec X]$$ to $$Z[\vec X]$$ performed internally in GCD algorithms.

### Univariate polynomial rings¶

Polynomial ring $$R[x]$$ can be defined over arbitrary coefficient ring $$R$$. There are two separate implementations of univariate rings:

• UnivariateRingZp64(p)
Ring of univariate polynomials over $$Z_p$$ with $$p < 2^{64}$$. Implementation of this ring uses specifically optimized data structures and efficient algorithms for arithmetic in $$Z_p$$ (see Modular arithmetic with machine integers).
• UnivariateRing(R)
Ring of univariate polynomials over generic coefficient domain $$R$$.

Illustrations:

// Ring Z/3[x]
val zp3x = UnivariateRingZp64(3, "x")
// parse univariate poly from string
val p1 = zp3x("4 + 8*x + 13*x^2")
val p2 = zp3x("4 - 8*x + 13*x^2")
assert (p1 + p2 == zp3x("2 - x^2") )

// GF(7^3)
val cfRing = GF(UnivariateRingZp64(7, "z")("1 + 3*z + z^2 + z^3"), "z")
// GF(7^3)[x]
val gfx = UnivariateRing(cfRing, "x")
// parse univariate poly from string
val r1 = gfx("4 + (8 + z)*x + (13 - z^43)*x^2")
val r2 = gfx("4 - (8 + z)*x + (13 + z^43)*x^2")
assert(r1 + r2 == gfx("1 - 2*x^2"))
val (div, rem) = r1 /% r2
assert(r1 == r2 * div + rem)

// Ring Z/3[x]
UnivariateRing<UnivariatePolynomialZp64> zp3x = UnivariateRingZp64(3);
// parse univariate poly from string
UnivariatePolynomialZp64
p1 = zp3x.parse("4 + 8*x + 13*x^2"),
p2 = zp3x.parse("4 - 8*x + 13*x^2");
assert zp3x.add(p1, p2).equals(zp3x.parse("2 - x^2"));

// GF(7^3)
FiniteField<UnivariatePolynomialZp64> cfRing = GF(UnivariateRingZp64(7).parse("1 + 3*z + z^2 + z^3"));
// GF(7^3)[x]
UnivariateRing<UnivariatePolynomial<UnivariatePolynomialZp64>> gfx = UnivariateRing(cfRing);
// parse univariate poly from string
UnivariatePolynomial<UnivariatePolynomialZp64>
r1 = gfx.parse("4 + (8 + z)*x + (13 - z^43)*x^2"),
r2 = gfx.parse("4 - (8 + z)*x + (13 + z^43)*x^2");
assert gfx.add(r1, r2).equals(gfx.parse("1 - 2*x^2"));
UnivariatePolynomial<UnivariatePolynomialZp64>
divRem[] = divideAndRemainder(r1, r2),
div = divRem,
rem = divRem;
assert r1.equals(gfx.add(gfx.multiply(r2, div), rem));


Tip

For univariate polynomial rings over $$Z_p$$ with $$p < 2^{64}$$ it is always preferred to use UnivariateRingZp64(p, "x") instead of generic UnivariateRing(Zp(p), "x"). In the latter case the generic data structures will be used (arbitrary precision integers etc.), while in the former the specialized implementation and algorithms will be used (see Modular arithmetic with machine integers) which are in several times faster than the generic ones. For example, from the mathematical point of view the following two lines define the same ring $$Z_{3}[x]$$:

val ringA = UnivariateRingZp64(3, "x")
val ringB = UnivariateRing(Zp(3), "x")


Though the math meaning is the same, ringA uses optimized polynomials UnivariatePolynomialZp64 while ringB uses generic UnivariatePolynomial<E>; as result, operations in ringA are in several times faster than in ringB.

Further details about univariate polynomials are in Univariate polynomials section.

Full API documentation

### Multivariate polynomial rings¶

Polynomial ring $$R[x_1, \dots, x_N]$$ can be defined over arbitrary coefficient ring $$R$$. There are two separate implementations of multivariate rings:

• MultivariateRingZp64(N, p)
Ring of multivariate polynomials with exactly $$N$$ variables over $$Z_p$$ with $$p < 2^{64}$$. Implementation of this ring uses specifically optimized data structures and efficient algorithms for arithmetic in $$Z_p$$ (see Modular arithmetic with machine integers).
• MultivariateRing(N, R)
Ring of multivariate polynomials with exactly $$N$$ variables over generic coefficient domain $$R$$.

Illustrations:

// Ring Z/3[x, y, z]
val zp3xyz = MultivariateRingZp64(3, Array("x", "y", "z"))
// parse univariate poly from string
val p1 = zp3xyz("4 + 8*x*y + 13*x^2*z^5")
val p2 = zp3xyz("4 - 8*x*y + 13*x^2*z^5")
assert (p1 + p2 == zp3xyz("2 - x^2*z^5") )

// GF(7^3)
val cfRing = GF(UnivariateRingZp64(7, "t")("1 + 3*t + t^2 + t^3"), "t")
// GF(7^3)[x, y, z]
val gfx = MultivariateRing(cfRing, Array("x", "y", "z"))
// parse univariate poly from string
val r1 = gfx("4 + (8 + t)*x*y + (13 - t^43)*x^2*z^5")
val r2 = gfx("4 - (8 + t)*x*y + (13 + t^43)*x^2*z^5")
assert(r1 + r2 == gfx("1 - 2*x^2*z^5"))
val (div, rem) = r1 /% r2
assert(r1 == r2 * div + rem)

String[] vars = {"x", "y", "z"};
// Ring Z/3[x, y, z]
MultivariateRing<MultivariatePolynomialZp64> zp3xyz = MultivariateRingZp64(3, 3);
// parse univariate poly from string
MultivariatePolynomialZp64
p1 = zp3xyz.parse("4 + 8*x*y + 13*x^2*z^5", vars),
p2 = zp3xyz.parse("4 - 8*x*y + 13*x^2*z^5", vars);
assert zp3xyz.add(p1, p2).equals(zp3xyz.parse("2 - x^2*z^5", vars));

// GF(7^3)
FiniteField<UnivariatePolynomialZp64> cfRing = GF(UnivariateRingZp64(7).parse("1 + 3*z + z^2 + z^3"));
// GF(7^3)[x, y, z]
MultivariateRing<MultivariatePolynomial<UnivariatePolynomialZp64>> gfxyz = MultivariateRing(3, cfRing);
// parse univariate poly from string
MultivariatePolynomial<UnivariatePolynomialZp64>
r1 = gfxyz.parse("4 + (8 + z)*x*y + (13 - z^43)*x^2*z^5", vars),
r2 = gfxyz.parse("4 - (8 + z)*x*y + (13 + z^43)*x^2*z^5", vars);
assert gfxyz.add(r1, r2).equals(gfxyz.parse("1 - 2*x^2*z^5", vars));
MultivariatePolynomial<UnivariatePolynomialZp64>
divRem[] = divideAndRemainder(r1, r2),
div = divRem,
rem = divRem;
assert r1.equals(gfxyz.add(gfxyz.multiply(r2, div), rem));


Tip

For multivariate polynomial rings over $$Z_p$$ with $$p < 2^{64}$$ one should always prefer to use MultivariateRingZp64(p, vars) instead of generic MultivariateRing(Zp(p), vars). In the latter case the generic data structures will be used (arbitrary precision integers etc.), while in the former the specialized implementation and algorithms will be used (see Modular arithmetic with machine integers) which are in several times faster than the generic ones. For example, from the mathematical point of view the following two lines define the same ring $$Z_{3}[x, y, z]$$:

val ringA = MultivariateRingZp64(3, Array("x", "y", "z"))
val ringB = MultivariateRing(Zp(3), Array("x", "y", "z"))


Though the math meaning is the same, ringA uses optimized polynomials MultivariatePolynomialZp64 while ringB uses generic MultivariatePolynomial<E>; as result, operations in ringA are in several times faster than in ringB.

Further details about multivariate polynomials are in Multivariate polynomials section.

Full API documentation

### Quotient rings¶

Operations in a multivariate quotient ring math:R[x_1, dots, x_N]/I, where $$I$$ is some ideal in $$R[x_1, \dots, x_N]$$ translate to operations in $$R[x_1, \dots, x_N]$$ with the result uniquely reduced modulo ideal $$I$$ (i.e. taking a remainder of multivariate division of polynomial by a Gröbner basis of the ideal, which is always unique):

// base ring Q[x,y,z]
val baseRing = MultivariateRing(Q, Array("x", "y", "z"))
val (x, y, z) = baseRing("x", "y", "z")

// ideal in a base ring generated by two polys <x^2 + y^12 - z, x^2*z + y^2 - 1>
// a proper Groebner basis will be constructed automatically
val ideal = {
implicit val ring = baseRing
Ideal(baseRing, Seq(x.pow(2) + y.pow(12) - z, x.pow(2) * z + y.pow(2) - 1))
}

// do some math in a quotient ring
val polyQuot = {
// quotient ring Q[x,y,z]/I
implicit val ring = QuotientRing(baseRing, ideal)

val poly1 = 10 * x.pow(12) + 11 * y.pow(11) + 12 * z.pow(10)
val poly2 = x * y - y * z - z * x
// algebraic operations performed in a quotient ring
11 * poly1 + poly1 * poly1 * poly2
}

// do the same math in a base ring
val polyBase = {
implicit val ring = baseRing
val poly1 = 10 * x.pow(12) + 11 * y.pow(11) + 12 * z.pow(10)
val poly2 = x * y - y * z - z * x
// algebraic operations performed in a base ring
11 * poly1 + poly1 * poly1 * poly2
}

assert(polyQuot != polyBase)
assert(polyQuot == polyBase %% ideal)

// base ring Q[x,y,z]
MultivariateRing<MultivariatePolynomial<Rational<BigInteger>>>
baseRing = MultivariateRing(3, Q);

// ideal in a base ring generated by two polys <x^2 + y^12 - z, x^2*z + y^2 - 1>
// a proper Groebner basis will be constructed automatically
MultivariatePolynomial<Rational<BigInteger>>
generator1 = baseRing.parse("x^2 + y^12 - z"),
generator2 = baseRing.parse("x^2*z + y^2 - 1");
Ideal<Monomial<Rational<BigInteger>>, MultivariatePolynomial<Rational<BigInteger>>>
ideal = Ideal.create(Arrays.asList(generator1, generator2));
// quotient ring Q[x,y,z]/I
QuotientRing<Monomial<Rational<BigInteger>>, MultivariatePolynomial<Rational<BigInteger>>>
quotRing = QuotientRing(baseRing, ideal);

// do some math in a quotient ring
MultivariatePolynomial<Rational<BigInteger>>
q1 = quotRing.parse("10 * x^12 + 11 * y^11 + 12 * z^10"),
q2 = quotRing.parse("x * y - y * z - z * x"),
polyQuot = quotRing.add(
quotRing.multiply(q1, 11),
quotRing.multiply(q1, q1, q2));

// do the same math in a base ring
MultivariatePolynomial<Rational<BigInteger>>
b1 = baseRing.parse("10 * x^12 + 11 * y^11 + 12 * z^10"),
b2 = baseRing.parse("x * y - y * z - z * x"),
polyBase = baseRing.add(
baseRing.multiply(b1, 11),
baseRing.multiply(b1, b1, b2));

assert !polyQuot.equals(polyBase);
assert  polyQuot.equals(ideal.normalForm(polyBase));


For details on how Rings constructs Gröbner bases of ideals see Ideals in multivariate polynomial rings.

Important

If the coefficient ring $$R$$ of a base ring is not a field, Rings will “effectively” perform all operations with coefficients as in the field of fractions $$Frac(R)$$. Thus, in Rings the ring $$Z[x_1, \dots, x_N]/I$$ is actually the same as $$Q[x_1, \dots, x_N]/I$$.

Note

The algebraic structure of quotient rings can’t be determined algorithmically in a general case. So, the ring methods isFied() and cardinality() (and other related methods) are not supported for quotient rings.

Full API documentation

## Scala DSL¶

Scala DSL allows to use standard mathematical operators for elements of arbitrary rings:

implicit val ring = UnivariateRing(Zp(3), "x")
val (a, b) = ring("1 + 2*x^2", "1 - x")

// compiles to ring.add(a, b)
val add = a + b
// compiles to ring.subtract(a, b)
val sub = a - b
// compiles to ring.multiply(a, b)
val mul = a * b
// compiles to ring.divideExact(a, b)
val div = a / b
// compiles to ring.divideAndRemainder(a, b)
val divRem = a /% b
// compiles to ring.increment(a, b)
val inc = a ++
// compiles to ring.decrement(a, b)
val dec = a --
// compiles to ring.negate(a, b)
val neg = -a


Note that in the above example the ring instance is defined as implicit. In this case all mathematical operations are delegated directly to the ring defined in the scope: e.g. a + b compiles to ring.add(a, b). Without the implicit keyword the behaviour may be different:

val a: IntZ = 10
val b: IntZ = 11

// no any implicit Ring[IntZ] instance in the scope
// compiles to a.add(b) (integer addition)
assert(a + b === 21)

implicit val ring = Zp(13)
// compiles to ring.add(a, b) (addition mod 13)
assert(a + b === 8)


As a general rule, if there is no any appropriate implicit ring instance in the scope (like in the first assertion in the above example), some default ring will be used. This default ring just delegates all mathematical operations to those defined by the corresponding type: e.g. a + b compiles to a.add(b) (or something equivalent). The default rings are available for integers ($$Z$$), polynomials (instantiated via rings.Rings.PolynomialRing(evidence)) and rationals (instantiated via rings.Rings.Frac(evidence)).

### General mathematical operators¶

Operators defined on elements of arbitrary rings:

Scala DSL Java equivalent
a + b ring.add(a, b)
a + b ring.add(a, b)
a - b ring.subtract(a, b)
a * b ring.multiply(a, b)
a / b ring.divideExact(a, b)
a /% b ring.divideAndRemainder(a, b)
a % b ring.remainder(a, b)
a.pow(exp) ring.pow(a, exp)
-a ring.negate(a)
a++ ring.increment(a)
a-- ring.decrement(a)
a.gcd(b) ring.gcd(a, b)
a < b ring.compare(a, b) < 0
a <= b ring.compare(a, b) <= 0
a > b ring.compare(a, b) > 0
a >= b ring.compare(a, b) >= 0
a === any ring.compare(a, ring.valueOf(any)) == 0
a =!= any ring.compare(a, ring.valueOf(any)) != 0

Important

Operators are available for any type E if there is an implicit ring Ring[E] in the scope. If there is no implicit ring, operators will work only on integers, rationals and polynomials (the appropriate default ring will be instantiated).

### Polynomial operators¶

Operators defined on generic polynomials:

Scala DSL Java equivalent
a := b a.set(b) (set a to the value of b)
a.toTraversable (no Java equivalent)

### Univariate polynomial operators¶

Operators defined on univariate polynomials:

Scala DSL Java equivalent
a << shift a.shiftLeft(shift)
a >> shift a.shiftRight(shift)
a(from, to) a.getRange(from, to)
a.at(index) a.get(index)
a.eval(point) a.evaluate(point)
a @@ index a.getAsPoly(index)
a /%% b UnivariateDivision.divideAndRemainderFast(a, b, inverse, true)
a %% b UnivariateDivision.remainderFast(a, b, inverse, true)
a.precomputedInverses UnivariateDivision.fastDivisionPreConditioningWithLCCorrection(a)

Note

The implicit IUnivariateRing[Poly, Coefficient] must be in the scope.

### Multivariate polynomial operators¶

Operators defined on multivariate polynomials:

Scala DSL Java equivalent
a(variable -> value) a.evaluate(variable, value)
a.eval(variable -> value) a.evaluate(variable, value)
a.swapVariables(i, j) AMultivariatePolynomial.swapVariables(a, i, j)
a /%/% (tuple) MultivariateDivision.divideAndRemainder(a, tuple: _*)
a /%/%* (dividers*) MultivariateDivision.divideAndRemainder(a, dividers: _*)
a %% (tuple) MultivariateDivision.remainder(a, tuple: _*)
a %% ideal ideal.normalForm(a)
a %%* (dividers*) MultivariateDivision.remainder(a, dividers: _*)

Note

The implicit IMultivariateRing[Term, Poly, Coefficient] must be in the scope.

### Ring methods¶

Methods added to Ring[E] interface:

Scala DSL Java equivalent
ring("string") ring.parse(string)
ring(integer) ring.valueOf(integer)
ring stringify obj gives appropriate string representation of obj
ring.ElementType type of elements of ring

### Polynomial ring methods¶

Methods added to IPolynomialRing[Poly, E] interface (Poly is polynomial type, E is a type of coefficients):

Scala DSL Description
ring.CoefficientType type of coefficients
ring.cfRing coefficient ring
ring.index(stringVar) or ring.variable(stringVar) gives the index of variable represented as string (used in the internal polynomial representation, see Polynomials); for example if ring = MultivariateRing(Z, Array("x", "y", "z")), than ring.index("x") == 0, ring.index("y") == 1 and ring.index("z") == 2

For more details see IPolynomialRing[Poly, E].

### Ideal methods¶

Methods added to Ideal[Term, Poly, E] class:

Scala DSL Java equivalent
I + J I.union(J)
I ∪ J I.union(J)
I ∩ J I.intersection(J)
I * J I.multiply(J)
I :/ J I.quotient(J)

For more details see Ideals in multivariate polynomial rings.

## Input/Output¶

### Java¶

Class io.Coder provides methods for parsing arbitrary mathematical expressions and helper methods to export them to strings. The simplest example of Coder usage may be the following:

// Parser for rational numbers
Coder<Rational<BigInteger>, ?, ?> qCoder = Coder.mkCoder(Q);
// parse some rational number
Rational<BigInteger> el = qCoder.parse("1/2/3 + (1-3/5)^3 + 1");
System.out.println(el);


In fact, method parse(string) defined in the interface Ring<E> by default traslates to Coder.mkCoder(this).parse(string).

To parse mathematical expressions with polynomials, one should supply string names of the variables involved. For example, to parse elements of $$Z[x, y, z]$$ one can do:

// polynomial ring Z[x,y,z]
MultivariateRing<MultivariatePolynomial<BigInteger>> ring = MultivariateRing(3, Z);
// Coder for Z[x,y,z]
Coder<MultivariatePolynomial<BigInteger>, ?, ?>
coder = Coder.mkMultivariateCoder(ring, "x", "y", "z");
// parse some element from string
MultivariatePolynomial<BigInteger> p = coder.parse("x^2 + y^2 + z^2");
// stringify element and print to stdout
System.out.println(coder.stringify(p));


Internally, polynomial instances do not store the information about particular string names of variables. Variables are treated just as “the first variable”, “the second variable” and so on without specifying particular names. So, in the last line Coder is used to convert polynomial expression to string (via stringify method) using “x”, “y” and “z” for the first, second and third variable respectively.

A more complicated case asrise when multiple polynomial rings involved. Consider e.g. the ring $$Frac(Z_2[t])[a, b, c]$$ with variable “t” corresponding to univariate polynomials from the coefficient ring (which is a field of univariate rational functions over $$Z_2$$) and “a”, “b” and “c” to variables from the base ring:

// univariate ring Z/2[t]
UnivariateRing<UnivariatePolynomialZp64> uRing = UnivariateRingZp64(2);
// coder for polynomials from Z/2[t]
Coder<UnivariatePolynomialZp64, ?, ?> uCoder = Coder.mkUnivariateCoder(uRing, "t");

// rational functions over Z/2[t]
Rationals<UnivariatePolynomialZp64> cfRing = Frac(uRing);
// coder for rational functions from Frac(Z/2[t])
Coder<Rational<UnivariatePolynomialZp64>, ?, ?>
cfCoder = Coder.mkRationalsCoder(cfRing, uCoder);

// ring Frac(Z/2[t])[a,b,c]
MultivariateRing<MultivariatePolynomial<Rational<UnivariatePolynomialZp64>>>
ring = MultivariateRing(3, cfRing);
// coder for polynomials from Frac(Z/2[t])[a,b,c]
Coder<MultivariatePolynomial<Rational<UnivariatePolynomialZp64>>, ?, ?>
coder = Coder.mkMultivariateCoder(ring, cfCoder, "a", "b", "c");

// parse some element
MultivariatePolynomial<Rational<UnivariatePolynomialZp64>>
el = coder.parse("(1 + t)*a^2 - c^3 + b/t^2 + (a + b)/(1 + t)^3");

// stringify it with coder
System.out.println(coder.stringify(el));


Coder allows to bind particular expressions to string variables. Continue the last example: to use e.g. “E” string for polynomial el one can do:

// associate variable "E" with polynomial el in parser
coder.bind("E", el);

// "E" will be replaced with el by the parser
MultivariatePolynomial<Rational<UnivariatePolynomialZp64>>
el2 = coder.parse("(a+b) * E^2 + 1");


Below is the summary of methods provided by the Coder class:

Coder method Description
parse(string) Parse string into element of ring
stringify(element) Convert ring element to string
bind(string, element) Bind particular expression to string variable

Factory methods for creating coders for different rings are the following:

Method Description
mkCoder(ring) Creates coder for generic ring
mkUnivariateCoder(uRing, variable) Creates coder for univariate polynomials from ring uRing using variable string for polynomial variable
mkUnivariateCoder(uRing, cfCoder, variable) Creates coder for univariate polynomials from ring uRing using cfCoder as the coder for polynomial coefficients and variable string for polynomial variable
mkMultivariateCoder(mRing, var1, var2, ...) Creates coder for multivariate polynomials from ring mRing using var1 string for the first variable, var2 for the seconds and so on
mkMultivariateCoder(mRing, cfCoder, var1, var2, ...) Creates coder for multivariate polynomials from ring mRing using cfCoder as the coder for polynomial coefficients and var1 string for the first variable, var2 for the seconds and so on
mkRationalsCoder(fracField, eCoder) Creates coder for rational expressions from the field fracField using eCoder as the coder for operands

### Scala¶

In Scala DSL, the appropriate instance of Coder is automatically created and stored by the Ring[E] instance (the coder may be accessed via ring.coder). To parse ring elements from strings one should use ring(string) syntax and to convert elements to strings one should use ring.stringify(element).

Parse rational numbers:

val rational = Q("1/2/3 + (1-3/5)^3 + 1")
println(rational)


Parse and stringify elements of $$Z[x, y, z]$$:

// ring Z[x,y,z]
implicit  val ring = MultivariateRing(Z, Array("x", "y", "z"))
// parse polynomial
val poly = ring("x^2 + y^2 + z^2")
// stringify polynomial
println(ring.stringify(poly))


Parse and stringify elements of $$Frac(Z_2[t])[a, b, c]$$ with variable “t” corresponding to univariate polynomials from the coefficient ring (which is a field of univariate rational functions over $$Z_2$$) and “a”, “b” and “c” to variables from the base ring:

// ring Z/2[t]
val uRing = UnivariateRingZp64(2, "t")
// rational functions over Z/2[t]
val cfRing = Frac(uRing)
// ring Frac(Z/2[t])[a,b,c]
implicit val ring = MultivariateRing(cfRing, Array("a", "b", "c"))

// parse some element
val el = ring("(1 + t)*a^2 - c^3 + b/t^2 + (a + b)/(1 + t)^3")

// stringify it
println(ring.stringify(el))


One can bind particular expressions to string variables. Continue the last example: to use e.g. “E” string for polynomial el one can do:

// associate variable "E" with polynomial el in parser
ring.coder.bind("E", el)

// "E" will be replaced with el by the parser
val el2 = ring("(a+b) * E^2 + 1")


Full API documentation

## Polynomials¶

Rings has separate implementation of univariate (dense) and multivariate (sparse) polynomials. Polynomials over $$Z_p$$ with $$p < 2^{64}$$ are also implemented separately and specifically optimized (coefficients are represented as primitive machine integers instead of generic templatized objects and fast modular arithmetic is used, see Modular arithmetic with machine integers). Below the type hierarchy of polynomial classes is shown:

### String representation of polynomials¶

The first thing about the internal representation of polynomials is that polynomial instances do not store the information about particular string names of variables. Variables are treated just as “the first variable”, “the second variable” and so on without specifying particular names (“x” or “y”). As result, if working with polynomials at the low level, one should manually specify which string names of variables used for parsing/stringifying polynomials. Few illusrtations:

import multivar.MultivariatePolynomial

// when parsing "x" will be considered as the "first variable"
// and "y" as "the second", then in the result the particular
// names "x" and "y" are erased
val poly1 = MultivariatePolynomial.parse("x^2 + x*y", "x", "y")
// parse the same polynomial but using "a" and "b" instead of "x" and "y"
val poly2 = MultivariatePolynomial.parse("a^2 + a*b", "a", "b")
// polynomials are equal (no matter which variable names were used when parsing)
assert(poly1 == poly2)
// degree in the first variable
assert(poly1.degree(0) == 2)
// degree in the second variable
assert(poly1.degree(1) == 1)

// this poly differs from poly2 since now "a" is "the second"
// variable and "b" is "the first"
val poly3 = MultivariatePolynomial.parse("a^2 + a*b", "b", "a")
assert(poly3 != poly2)
// swap the first and the second variables and the result is equal to poly2
assert(poly3.swapVariables(0, 1) == poly2)

// the default toString() will use the default
// variables "x", "y", "z"  (if more variables
// then it will use "x1", "x2", ... , "xN")
// the result will be "x*y + x^2"
println(poly1)
// specify which variable names use for printing
// the result will be "a*b + a^2"
println(poly1.toString("a", "b"))
// the result will be "a*b + b^2"
println(poly1.toString("b", "a"))

// when parsing "x" will be considered as the "first variable"
// and "y" as "the second" => in the result the particular
// names "x" and "y" are erased
MultivariatePolynomial<BigInteger> poly1 = MultivariatePolynomial.parse("x^2 + x*y", "x", "y");
// parse the same polynomial but using "a" and "b" instead of "x" and "y"
MultivariatePolynomial<BigInteger> poly2 = MultivariatePolynomial.parse("a^2 + a*b", "a", "b");
// polynomials are equal (no matter which variable names were used when parsing)
assert poly1.equals(poly2);
// degree in the first variable
assert poly1.degree(0) == 2;
// degree in the second variable
assert poly1.degree(1) == 1;

// this poly differs from poly2 since now "a" is "the second"
// variable and "b" is "the first"
MultivariatePolynomial<BigInteger> poly3 = MultivariatePolynomial.parse("a^2 + a*b", "b", "a");
assert !poly3.equals(poly2);
// swap the first and the second variables and the result is equal to poly2
assert AMultivariatePolynomial.swapVariables(poly3, 0, 1).equals(poly2);

// the default toString() will use the default
// variables "x", "y", "z"  (if more variables
// then it will use "x1", "x2", ... , "xN")
// the result will be "x*y + x^2"
System.out.println(poly1);
// specify which variable names use for printing
// the result will be "a*b + a^2"
System.out.println(poly1.toString("a", "b"));
// the result will be "a*b + b^2"
System.out.println(poly1.toString("b", "a"));


In Java, in order to parse/stringify polynomials, especially over complicated coefficient rings, it is always recomended to use io.Coder (see Input/Output section) instead of factory MultivariatePolynomial.parse(string) methods.

In Scala, information about string names of variables is stored by the ring instance automatically at creation, as well as the appropriate instance of io.Coder which is used internally to parse/stringify ring elements. So in Scala one should parse polynomials with ring(string) and stringify polynomials with ring.stringify(poly). The following example gives a full illustration:

// coefficient ring is GF(17, 3) represented as
// univariate polynomials over "t"
val cfRing = GF(17, 3, "t")

// polynomial ring GF(17, 3)[x, y, z]
implicit val ring = MultivariateRing(cfRing, Array("x", "y", "z"))

// using "x", "y", "z" for polynomial vars and "t" for
// element from GF(17, 3) (that is the eighteenth element
// of GF(17, 3))
val poly = ring("t + x*y - 3*t^9*z^2")

// stringify poly using "x", "y", "z" for polynomial vars
// and "t" for element from GF(17, 3)
println(ring stringify poly)

// one can access underlying coder via .coder
// e.g. use it to bind string "p" with polynomial poly
ring.coder.bind("p", poly)

val poly2 = ring("x - p^2")
assert(ring.x - poly.pow(2) == poly2)

// this is forbidden
// (can't use "a" and "b" instead of "x" and "y")
val polyerr = ring("a^2 + b*c") // <- error!


Tip

In Java, in order to parse polynomial from string as well as to obtain string representation of polynomial it is recomended to use io.Coder (see Input/Output section). In Scala one should parse polynomials with ring(string) and stringify polynomials with ring.stringify(poly).

### Polynomial instances and mutability¶

The second important note about internal implementation of polynomials is that polynomial instances are in general mutable. Methods which may modify the instance are available in Java API, while all mathematical operations applied using Scala DSL (with operators +, - etc.) are not modifier:

val ring = UnivariateRing(Z, "x")
val (p1, p2, p3) = ring("x", "x^2", "x^3")

// this WILL modify p1
p1.add(p2)
// this will NOT modify p2
p2.copy().add(p3)
// this will NOT modify p2
ring.add(p2, p3)
// this will NOT modify p2
p2 + p3

UnivariatePolynomial
p1 = UnivariatePolynomial.parse("x", Z),
p2 = UnivariatePolynomial.parse("x^2", Z),
p3 = UnivariatePolynomial.parse("x^3", Z);

// this WILL modify p1
p1.add(p2);
// this will NOT modify p2
p2.copy().add(p3);


There are strong reasons to use mutable data structures internally for implementation of polynomial algebra. However, it may be confusing when just using the API. So it is always preffered to use ring instance for mathematical operations: use ring.add(a, b) instead of a.add(b) and so on.

Warning

Polynomial instances are mutable. One should call Java API methods on polynomial instances with attention, since they will modify the instance. E.g. a.add(b) will add b directly to the instance a instead of creating a new instance.

Important

When using Rings with Scala it is strongly suggested always to define and use ring instance directly to perform mathematical operations on polynomials. E.g. use ring.add(a, b) or just a + b instead of a.add(b).

The parent interface for all polynomials is IPolynomial<PolyType>. The following example gives a template for implementing generic function which may operate with arbitrary polynomial types:

/**
* @tparam Poly type of polynomials
*/
def genericFunc[Poly <: IPolynomial[Poly]](poly: Poly): Poly = {
poly.pow(2) * 3 + poly * 2 + 1
}

// univariate polynomials over Zp64
val uRing = UnivariateRingZp64(17, "x")
println(uRing stringify genericFunc(uRing("1 + 2*x + 3*x^2")))

// multivariate polynomials over Z
val mRing = MultivariateRing(Z, Array("x", "y", "z"))
println(mRing stringify genericFunc(mRing("1 + x + y + z")))

/**
* @param <Poly> polynomial type
*/
static <Poly extends IPolynomial<Poly>> Poly genericFunc(Poly poly) {
return poly.createOne().add(
poly.copy().multiply(2),
polyPow(poly, 2).multiply(3));
}

// univariate polynomials over Zp64
System.out.println(genericFunc(UnivariatePolynomialZ64.create(1, 2, 3).modulus(17)));
// multivariate polynomials over Z
System.out.println(genericFunc(MultivariatePolynomial.parse("1 + x + y + z")));


Note that there is no any specific polynomial ring used in the genericFunc and mathematical operations are delegated to the polynomial instances (plain polynomial addition/multiplication is used). Compare it to the following almost identical example, where the polynomial ring is specified directly and all math operations are delegated to the Ring<E> instance:

/**
* @tparam Poly type of polynomials
* @tparam E    type of polynomial coefficients
*/
def genericFuncWithRing[Poly <: IPolynomial[Poly], E](poly: Poly)
(implicit ring: IPolynomialRing[Poly, E]): Poly = {
poly.pow(2) * 3 + poly * 2 + 1
}

// univariate polynomials over Zp64
val uRing = UnivariateRingZp64(17, "x")
println(uRing stringify genericFuncWithRing(uRing("1 + 2*x + 3*x^2"))(uRing))

// multivariate polynomials over Z
val mRing = MultivariateRing(Z, Array("x", "y", "z"))
println(mRing stringify genericFuncWithRing(mRing("1 + x + y + z"))(mRing))

/**
* @param <Poly> polynomial type
*/
static <Poly extends IPolynomial<Poly>> Poly genericFuncWithRing(Poly poly, IPolynomialRing<Poly> ring) {
return ring.add(
ring.getOne(),
ring.multiply(poly, ring.valueOf(2)),
ring.multiply(ring.pow(poly, 2), ring.valueOf(3)));
}

// univariate polynomials over Zp64
UnivariateRing<UnivariatePolynomialZp64> uRing = UnivariateRingZp64(17);
System.out.println(genericFuncWithRing(uRing.parse("1 + 2*x + 3*x^2"), uRing));

// multivariate polynomials over Z
MultivariateRing<MultivariatePolynomial<BigInteger>> mRing = MultivariateRing(3, Z);
System.out.println(genericFuncWithRing(mRing.parse("1 + x + y + z"), mRing));


While in case of UnivariateRingZp64 or MultivariateRing both genericFunc and genericFuncWithRing give the same result, in the case of e.g. Galois field the results will be different, since mathematical operations in Galois field are performed modulo the irreducible polynomial:

// GF(13^4)
implicit val gf = GF(13, 4, "z")
// some element of GF(13^4)
val poly = gf("1 + z + z^2 + z^3 + z^4").pow(10)

val noRing = genericFunc(poly)
println(noRing)

val withRing = genericFuncWithRing(poly)
println(withRing)

assert(noRing != withRing)

// GF(13^4)
FiniteField<UnivariatePolynomialZp64> gf = GF(13, 4);
// some element of GF(13^4)
UnivariatePolynomialZp64 poly = gf.pow(gf.parse("1 + z + z^2 + z^3 + z^4"), 10);

UnivariatePolynomialZp64 noRing = genericFunc(poly);
System.out.println(noRing);

UnivariatePolynomialZp64 withRing = genericFuncWithRing(poly, gf);
System.out.println(withRing);

assert !noRing.equals(withRing);


Full API documentation

### Polynomial GCD, factorization and division with remainder¶

For convenience, the high-level useful methods such as polynomial GCD and factorization are collected in PolynomialMethods class. PolynomialMethods is just a facade which delegates method call to specialized implementation depending on the type of input (univariate or multivariate). The following methods are collected in PolynomialMethods:

• FactorSquareFree(poly)
Gives square-free factor decomposition of given polynomial.
• Factor(poly)
Gives complete factor decomposition of polynomial.
• PolynomialGCD(a, b, c, ...)
Gives greatest common divisor of given polynomials.
• divideAndRemainder(dividend, divider)
Gives quotient and remainder of the input.
• remainder(dividend, divider)
Gives the remainder of dividend and divider.
• coprimeQ(a, b, c, ...)
Tests whether specified polynomials are pairwise coprime.
• polyPow(poly, exponent)
Gives polynomials in a power of specified exponent.

The examples of polynomial factorization and GCD are given in the below sections and in the Quick Tour.

### Univariate polynomials¶

Rings has two separate implementations of univariate polynomials:

Internally both implementations use dense data structure (array of coefficients) and Karatsuba’s algrotithm for multiplication (Sec. 8.1 in [GaGe03]). Generic interface IUnivariatePolynomial unifies methods of these two implementations. The following template shows how to write generic function which works with both types of univariate polynomials:

/**
* @tparam Poly type of univariate polynomials
*/
def genericFunc[Poly <: IUnivariatePolynomial[Poly]](poly: Poly) = ???

/**
* @tparam Poly type of univariate polynomials
* @tparam E    type of polynomial coefficients
*/
def genericFuncWithRing[Poly <: IUnivariatePolynomial[Poly], E](poly: Poly)
(implicit ring: IUnivariateRing[Poly, E]) =  ???

/**
* @param <Poly> univariate polynomial type
*/
static <Poly extends IUnivariatePolynomial<Poly>>
Poly genericFunc(Poly poly) { return null; }

/**
* @param <Poly> univariate polynomial type
*/
static <Poly extends IUnivariatePolynomial<Poly>>
Poly genericFuncWithRing(Poly poly, IPolynomialRing<Poly> ring) { return null; }


Full API documentation

#### Univariate division with remainder¶

There are several algorithms for division with remainder of univariate polynomials implemented in Rings:

• UnivariateDivision.divideAndRemainderClassic
Plain division
• UnivariateDivision.pseudoDivideAndRemainder
Plain pseudo division of polynomials over non-fields
• UnivariateDivision.divideAndRemainderFast
Fast division via Newton iterations (Sec. 11 in [GaGe03])

The upper-level method UnivariateDivision.divideAndRemainder switches between plain and fast division depending on the input. The algorithm with Newton iterations allows to precompute Newton inverses for the divider and then use it for divisions by that divider. This allows to achieve considerable performance boost when need to do several divisions with a fixed divider (e.g. for implementation of Galois fields). Examples:

implicit val ring = UnivariateRingZp64(17, "x")
// some random divider
val divider = ring.randomElement()
// some random dividend
val dividend = 1 + 2 * divider + 3 * divider.pow(2)

// quotient and remainder using built-in methods
val (divPlain, remPlain) = dividend /% divider

// precomputed Newton inverses, need to calculate it only once
implicit val invMod = divider.precomputedInverses
// quotient and remainder computed using fast
// algorithm with precomputed Newton inverses
val (divFast, remFast) = dividend /%% divider

// results are the same
assert((divPlain, remPlain) == (divFast, remFast))

UnivariateRing<UnivariatePolynomialZp64> ring = UnivariateRingZp64(17);
// some random divider
UnivariatePolynomialZp64 divider = ring.randomElement();
// some random dividend
UnivariatePolynomialZp64 dividend = ring.add(
ring.valueOf(1),
ring.multiply(ring.valueOf(2), divider),
ring.multiply(ring.valueOf(3), ring.pow(divider, 2)));

// quotient and remainder using built-in methods
UnivariatePolynomialZp64[] divRemPlain
= UnivariateDivision.divideAndRemainder(dividend, divider, true);

// precomputed Newton inverses, need to calculate it only once
UnivariateDivision.InverseModMonomial<UnivariatePolynomialZp64> invMod
= UnivariateDivision.fastDivisionPreConditioning(divider);
// quotient and remainder computed using fast
// algorithm with precomputed Newton inverses
UnivariatePolynomialZp64[] divRemFast
= UnivariateDivision.divideAndRemainderFast(dividend, divider, invMod, true);

// results are the same
assert Arrays.equals(divRemPlain, divRemFast);


Full API documentation

#### Univariate resultants and subresultants¶

Rings have several algorithms for computing resultants and subresultant sequences implemented in UnivariateResultants class:

• ClassicalPRS, PrimitivePRS, PseudoPRS and SubresultantPRS
different methods for computing polynomial remainder sequences (PRS) along with corresponding subresultants (including scalar), resultant and polynomial GCD (see [GaLu03])
• ModularResultant
modular algorithm for computing resultans for polynomials over $$Z$$ and $$Q$$
• ModularResultantInNumberField
modular algorithm for computing resultans for polynomials over algebraic number fields
• Resultant
upper level method which switches between methods listed above depending on the coefficient ring
• Discriminant
computes discriminant of univariate polynomial

Full API documentation

#### Univariate GCD¶

Rings have several algorithms for univariate GCD available from class UnivariateGCD:

• EuclidGCD and ExtedndedEuclidGCD
Euclidean algorithm (and its extended version)
• HalfGCD and UnivariateGCD.ExtedndedHalfGCD
Half-GCD (and its extended version) (Sec. 11 [GaGe03])
• ModularGCD and ModularExtendedGCD
Modular GCD (Sec. 6.7 in [GaGe03], small primes version) and modular extended GCD with rational reconstruction (Sec. 6.11 in [GaGe03])
• PolynomialGCDInNumberField and PolynomialGCDInRingOfIntegersOfNumberField
Modular GCD algrorithms for polynomials over algebraic number fields ([LaMc89], [Enca95])

The upper-level method PolynomialGCD switches between Euclidean algorithm and Half-GCD for polynomials in $$F[x]$$ where $$F$$ is a finite field. For polynomials in $$Z[x]$$, $$Q[x]$$ and $$Q(\alpha)[x]$$ the modular algorithm is used (small primes version). In other cases algorithm with subresultant sequences is used. Examples:

import poly.univar.UnivariateGCD._

// Polynomials over field
val ringZp = UnivariateRingZp64(17, "x")
val a = ringZp("1 + 3*x + 2*x^2")
val b = ringZp("1 - x^2")
// Euclid and Half-GCD algorithms for polynomials over field
assert(EuclidGCD(a, b) == HalfGCD(a, b))
// Extended Euclidean algorithm
val (gcd, s, t) = ExtendedEuclidGCD(a, b) match {case Array(gcd, s, t) => (gcd, s, t)}
assert(a * s + b * t == gcd)
// Extended Half-GCD algorithm
val (gcd1, s1, t1) = ExtendedHalfGCD(a, b) match {case Array(gcd, s, t) => (gcd, s, t)}
assert((gcd1, s1, t1) == (gcd, s, t))

// Polynomials over Z
val ringZ = UnivariateRing(Z, "x")
val aZ = ringZ("1 + 3*x + 2*x^2")
val bZ = ringZ("1 - x^2")
// GCD for polynomials over Z
assert(ModularGCD(aZ, bZ) == ringZ("1 + x"))

// Bivariate polynomials represented as Z[y][x]
val ringXY = UnivariateRing(UnivariateRing(Z, "y"), "x")
val aXY = ringXY("(1 + y) + (1 + y^2)*x + (y - y^2)*x^2")
val bXY = ringXY("(3 + y) + (3 + 2*y + y^2)*x + (3*y - y^2)*x^2")
// Subresultant sequence
val subResultants = UnivariateResultants.SubresultantPRS(aXY, bXY)
// The GCD
val gcdXY = subResultants.gcd.primitivePart
assert(aXY % gcdXY === 0 && bXY % gcdXY === 0)

// Polynomials over field
UnivariatePolynomialZp64 a = UnivariatePolynomialZ64.create(1, 3, 2).modulus(17);
UnivariatePolynomialZp64 b = UnivariatePolynomialZ64.create(1, 0, -1).modulus(17);
// Euclid and Half-GCD algorithms for polynomials over field
assert EuclidGCD(a, b).equals(HalfGCD(a, b));
// Extended Euclidean algorithm
UnivariatePolynomialZp64[] xgcd = ExtendedEuclidGCD(a, b);
assert a.copy().multiply(xgcd).add(b.copy().multiply(xgcd)).equals(xgcd);
// Extended Half-GCD algorithm
UnivariatePolynomialZp64[] xgcd1 = ExtendedHalfGCD(a, b);
assert Arrays.equals(xgcd, xgcd1);

// Polynomials over Z
UnivariatePolynomial<BigInteger> aZ = UnivariatePolynomial.create(1, 3, 2);
UnivariatePolynomial<BigInteger> bZ = UnivariatePolynomial.create(1, 0, -1);
// GCD for polynomials over Z
assert ModularGCD(aZ, bZ).equals(UnivariatePolynomial.create(1, 1));

// Bivariate polynomials represented as Z[y][x]
UnivariateRing<UnivariatePolynomial<UnivariatePolynomial<BigInteger>>>
ringXY = UnivariateRing(UnivariateRing(Z));
UnivariatePolynomial<UnivariatePolynomial<BigInteger>>
aXY = ringXY.parse("(1 + y) + (1 + y^2)*x + (y - y^2)*x^2"),
bXY = ringXY.parse("(3 + y) + (3 + 2*y + y^2)*x + (3*y - y^2)*x^2");
// Subresultant sequence
PolynomialRemainders<UnivariatePolynomial<UnivariatePolynomial<BigInteger>>>
subResultants = UnivariateResultants.SubresultantPRS(aXY, bXY);
// The GCD
UnivariatePolynomial<UnivariatePolynomial<BigInteger>> gcdXY = subResultants.gcd().primitivePart();
assert UnivariateDivision.remainder(aXY, gcdXY, true).isZero();
assert UnivariateDivision.remainder(bXY, gcdXY, true).isZero();


Full API documentation

#### Univariate factorization¶

Implementation of univariate factorization in Rings is distributed over several classes:

• UnivariateSquareFreeFactorization
Square-free factorization of univariate polynomials. In the case of zero characteristic Yun’s algorithm is used (Sec. 14.6 in [GaGe03]), otherwise Musser’s algorithm is used (Sec. 8.3 in [GeCL92], [Muss71]).
• DistinctDegreeFactorization
Distinct-degree factorization. Internally there are several algorithms: plain (Sec. 14.2 in [GaGe03]), adapted version with precomputed $$x$$-powers, and Victor Shoup’s baby-step giant-step algorithm [Shou95]. The upper-level method swithces between these algorithms depending on the input.
• EqualDegreeFactorization
Equal-degree factorization using Cantor-Zassenhaus algorithm in both odd and even characteristic (Sec. 14.3 in [GaGe03]).
• UnivariateFactorization
Defines upper-level methods and implements factorization over $$Z$$, $$Q$$ and $$Q(\alpha)$$. In case of $$Z[x]$$ Hensel lifting (combined linear/quadratic) is used to lift factorization modulo some 32-bit prime number to actual factorization over $$Z$$ and naive recombination to reconstruct correct factors. For polynomials over algebraic extensions Trager’s algorithm [Trag76] is used.

Univariate factorization is supported for polynomials in $$F[x]$$ where $$F$$ is either finite field, $$Z$$, $$Q$$, $$Q(\alpha_1, \dots, \alpha_r)$$ or other polynomial ring. Examples:

// ring GF(13^5)[x] (coefficient domain is finite field)
val ringF = UnivariateRing(GF(13, 5, "z"), "x")
// some random polynomial composed from some factors
val polyF = ringF.randomElement() * ringF.randomElement() * ringF.randomElement().pow(10)
// perform square-free factorization
println(ringF stringify FactorSquareFree(polyF))
// perform complete factorization
println(ringF stringify Factor(polyF))

// ring Q[x]
val ringQ = UnivariateRing(Q, "x")
// some random polynomial composed from some factors
val polyQ = ringQ.randomElement() * ringQ.randomElement() * ringQ.randomElement().pow(10)
// perform square-free factorization
println(ringQ stringify FactorSquareFree(polyQ))
// perform complete factorization
println(ringQ stringify Factor(polyQ))

// ring GF(13^5)[x] (coefficient domain is finite field)
UnivariateRing<UnivariatePolynomial<UnivariatePolynomialZp64>> ringF = UnivariateRing(GF(13, 5));
// some random polynomial composed from some factors
UnivariatePolynomial<UnivariatePolynomialZp64> polyF = ringF.randomElement().multiply(ringF.randomElement().multiply(polyPow(ringF.randomElement(), 10)));

// perform square-free factorization
System.out.println(FactorSquareFree(polyF));
// perform complete factorization
System.out.println(Factor(polyF));

// ring Q[x]
UnivariateRing<UnivariatePolynomial<Rational<BigInteger>>> ringQ = UnivariateRing(Q);
// some random polynomial composed from some factors
UnivariatePolynomial<Rational<BigInteger>> polyQ = ringQ.randomElement().multiply(ringQ.randomElement().multiply(polyPow(ringQ.randomElement(), 10)));
// perform square-free factorization
System.out.println(FactorSquareFree(polyQ));
// perform complete factorization
System.out.println(Factor(polyQ));


Full API documentation

#### Testing irreducibility¶

Irreducibility test and generation of random irreducible polynomials are availble from IrreduciblePolynomials. For irreducibility testing of polynomials over finite fields the algorithm described in Sec. 14.9 in [GaGe03] is used. Methods implemented in IrreduciblePolynomials are used for construction of arbitrary Galois fields. Examples:

import rings.poly.univar.IrreduciblePolynomials._
val random = new Random()

// random irreducible polynomial in Z/2[x] of degree 10 (UnivariatePolynomialZp64)
val poly1 = randomIrreduciblePolynomial(2, 10, random)
assert(poly1.degree() == 10)
assert(irreducibleQ(poly1))

// random irreducible polynomial in Z/2[x] of degree 10 (UnivariatePolynomial[Integer])
val poly2 = randomIrreduciblePolynomial(Zp(2).theRing, 10, random)
assert(poly2.degree() == 10)
assert(irreducibleQ(poly2))

// random irreducible polynomial in GF(11^15)[x] of degree 10 (this may take few seconds)
val poly3 = randomIrreduciblePolynomial(GF(11, 15).theRing, 10, random)
assert(poly3.degree() == 10)
assert(irreducibleQ(poly3))

// random irreducible polynomial in Z[x] of degree 10
val poly4 = randomIrreduciblePolynomialOverZ(10, random)
assert(poly4.degree() == 10)
assert(irreducibleQ(poly4))

Well44497b random = new Well44497b();

// random irreducible polynomial in Z/2[x] of degree 10
UnivariatePolynomialZp64 poly1 = randomIrreduciblePolynomial(2, 10, random);
assert poly1.degree() == 10;
assert irreducibleQ(poly1);

// random irreducible polynomial in Z/2[x] of degree 10
UnivariatePolynomial<BigInteger> poly2 = randomIrreduciblePolynomial(Zp(2), 10, random);
assert poly2.degree() == 10;
assert irreducibleQ(poly2);

// random irreducible polynomial in GF(11^15)[x] of degree 10 (this may take few seconds)
UnivariatePolynomial<UnivariatePolynomialZp64> poly3 = randomIrreduciblePolynomial(GF(11, 15), 10, random);
assert poly3.degree() == 10;
assert irreducibleQ(poly3);

// random irreducible polynomial in Z[x] of degree 10
UnivariatePolynomial<BigInteger> poly4 = randomIrreduciblePolynomialOverZ(10, random);
assert poly4.degree() == 10;
assert irreducibleQ(poly4);


Full API documentation

#### Univariate interpolation¶

Polynomial interpolation via Newton method can be done in the following way:

import rings.poly.univar.UnivariateInterpolation._

// points
val points = Array(1L, 2L, 3L, 12L)
// values
val values = Array(3L, 2L, 1L, 6L)

// interpolate using Newton method
val result = new InterpolationZp64(Zp64(17))
.update(points, values)
.getInterpolatingPolynomial

// result.evaluate(points(i)) = values(i)
assert(points.zipWithIndex.forall { case (point, i) => result.evaluate(point) == values(i) })

// points
long[] points = {1L, 2L, 3L, 12L};
// values
long[] values = {3L, 2L, 1L, 6L};

// interpolate using Newton method
UnivariatePolynomialZp64 result = new InterpolationZp64(Zp64(17))
.update(points, values)
.getInterpolatingPolynomial();

// result.evaluate(points(i)) = values(i)
assert IntStream.range(0, points.length).allMatch(i -> result.evaluate(points[i]) == values[i]);


With Scala DSL it is quite easy to implement Lagrange interpolation formula:

/*  Lagrange interpolation formula */
def lagrange[Poly <: IUnivariatePolynomial[Poly], E](points: Seq[E], values: Seq[E])(implicit ring: IUnivariateRing[Poly, E]) = {
points.indices
.foldLeft(ring getZero) { case (sum, i) =>
sum + points.indices
.filter(_ != i)
.foldLeft(ring getConstant values(i)) { case (product, j) =>
implicit val cfRing = ring.cfRing
val E: E = points(i) - points(j)
product * (ring.x - points(j)) / E
}
}
}

import rings.poly.univar.UnivariateInterpolation._

// coefficient ring GF(13, 5)
implicit val cfRing = GF(13, 5, "z")
val z = cfRing("z")
// some points
val points = Array(1 + z, 2 + z, 3 + z, 12 + z)
// some values
val values = Array(3 + z, 2 + z, 1 + z, 6 + z)

// interpolate with Newton iterations
val withNewton = new Interpolation(cfRing)
.update(points, values)
.getInterpolatingPolynomial
// interpolate using Lagrange formula
val withLagrange = lagrange(points, values)(UnivariateRing(cfRing, "x"))
// results are the same
assert(withNewton == withLagrange)


Full API documentation

### Multivariate polynomials¶

Rings has two separate implementations of multivariate polynomials:

Internally both implementations use sparse data structure — map (java.util.TreeMap) from degree vectors (DegreeVector) to monomials (AMonomial) . Monomial type is implemented as just a degree vector which additionally holds a coefficient. So in correspondence with the two implementations of multivariate polynomials there are two implementations of monomials:

The generic parent class for multivariate polynomials is AMultivariatePolynomial<MonomialType, PolyType>. The following template shows how to write generic function which works with both types of multivariate polynomials:

/**
* @tparam Monomial    type of monomials
* @tparam Poly        type of multivariate polynomials
*/
def genericFunc[
Monomial <: AMonomial[Monomial],
Poly <: AMultivariatePolynomial[Monomial, Poly]
](poly: Poly) = ???

/**
* @tparam Monomial    type of monomials
* @tparam Poly        type of multivariate polynomials
* @tparam Coefficient type of polynomial coefficients
*/
def genericFuncWithRing[
Monomial <: AMonomial[Monomial],
Poly <: AMultivariatePolynomial[Monomial, Poly],
Coefficient
](poly: Poly)
(implicit ring: IMultivariateRing[Monomial, Poly, Coefficient]) = ???

implicit val ring = MultivariateRing(Z, Array("x", "y", "z"))
import ring.{MonomialType, PolyType, CoefficientType}

val poly = ring.randomElement()

// call generic func directly
genericFunc[MonomialType, PolyType, CoefficientType](poly)
genericFuncWithRing[MonomialType, PolyType, CoefficientType](poly)

// define shortcuts
val func = (p: ring.PolyType) =>
genericFunc[MonomialType, PolyType, CoefficientType](p)
val funcWithRing = (p: ring.PolyType) =>
genericFuncWithRing[MonomialType, PolyType, CoefficientType](p)(ring)

// call with shortcuts
func(poly)
funcWithRing(poly)

/**
* @param <Monomial> type of monomials
* @param <Poly>     type of multivariate polynomials
*/
static <Monomial extends AMonomial<Monomial>,
Poly extends AMultivariatePolynomial<Monomial, Poly>>
Poly genericFunc(Poly poly) { return null; }

/**
* @param <Monomial> type of monomials
* @param <Poly>     type of multivariate polynomials
*/
static <Monomial extends AMonomial<Monomial>,
Poly extends AMultivariatePolynomial<Monomial, Poly>>
Poly genericFuncWithRing(Poly poly, IPolynomialRing<Poly> ring) { return null; }

// call generic funcs
genericFunc(MultivariatePolynomial.parse("a + b"));

MultivariateRing<MultivariatePolynomial<BigInteger>> ring = MultivariateRing(3, Z);
genericFuncWithRing(ring.parse("a + b"), ring);


Full API documentation

#### Monomial order¶

Rings uses sparse data structure for multivariate polynomials — a sorted map (java.util.TreeMap) of degree vectors to monomials. Different sort functions of degree vectors correspond to different monomial orders. There are several monomial orders predefined in MonomialOrder:

• LEX
Lexicographic monomial order.
• ALEX
Antilexicographic monomial order.
• GRLEX
Graded lexicographic monomial order.
• GREVLEX
Graded reverse lexicographic monomial order.
• EliminationOrder(baseOrder, i)
i-th elimination order.

By default Rings uses GREVLEX order though the monomial order can be changed in many ways. Examples:

import MonomialOrder._

val ring = MultivariateRing(Z, Array("x", "y"), GREVLEX)

// monomials in GREVLEX order
val poly = ring("x + x^2*y^2 + x*y")
assert(poly.ordering == GREVLEX)

// monomials in LEX order
val poly2 = poly.setOrdering(LEX)
assert(poly2.ordering == LEX)

// monomials in GREVLEX order (lhs ordering is used in binary operations)
val add = poly + poly2
assert(add.ordering == GREVLEX)

// monomials in LEX order (lhs ordering is used in binary operations)
val add2 = poly2 + poly
assert(add2.ordering == LEX)

MultivariateRing<MultivariatePolynomial<BigInteger>> ring
= MultivariateRing(2, Z, MonomialOrder.GREVLEX);

// poly in GREVLEX
MultivariatePolynomial<BigInteger> poly = ring.parse("x + x^2*y^2 + x*y");
assert poly.ordering == MonomialOrder.GREVLEX;

// poly in LEX
MultivariatePolynomial<BigInteger> poly2 = poly.setOrdering(MonomialOrder.LEX);
assert poly2.ordering == MonomialOrder.LEX;

// poly in GREVLEX (ordering of lhs is used)
MultivariatePolynomial<BigInteger> add = ring.add(poly, poly2);
assert add.ordering == MonomialOrder.GREVLEX;

// poly in LEX (ordering of lhs is used)
MultivariatePolynomial<BigInteger> add2 = ring.add(poly2, poly);
assert add2.ordering == MonomialOrder.LEX;


Full API documentation

#### Multivariate division with remainder¶

Multivariate division with remainder (polynomial reduction) of polynomial $$dividend$$ by the array of $$dividers$$ gives array of $$quotients$$ and $$remainder$$ satisfying the following formula:

$dividend = \sum_{i=0}^{N} quotient_{i} \times divider_{i} + remainder$

Examples:

val ring = MultivariateRing(Z, Array("x", "y", "z"), MonomialOrder.LEX)

val dividend = ring("x - x^2*y^2 + 2*x*y + 1 - z*y^2*x^2 + z").pow(3)
val divider1 = ring("x + y")
val divider2 = ring("x + z")
val divider3 = ring("y + z")

{
val (quot1, quot2, rem) = dividend /%/% (divider1, divider2)
assert(dividend == divider1 * quot1 + divider2 * quot2 + rem)
}

{
val (quot1, quot2, quot3, rem) = dividend /%/% (divider1, divider2, divider3)
assert(dividend == divider1 * quot1 + divider2 * quot2 + divider3 * quot3 + rem)
}

String[] variables = {"x", "y", "z"};
MultivariatePolynomial<BigInteger>
dividend = MultivariatePolynomial.parse("x - x^2*y^2 + 2*x*y + 1 - z*y^2*x^2 + z", variables),
divider1 = MultivariatePolynomial.parse("x + y", variables),
divider2 = MultivariatePolynomial.parse("x + z", variables),
divider3 = MultivariatePolynomial.parse("y + z", variables);

dividend = polyPow(dividend, 3);

{
MultivariatePolynomial<BigInteger>[] divRem
= MultivariateDivision.divideAndRemainder(dividend, divider1, divider2);

MultivariatePolynomial<BigInteger>
quot1 = divRem, quot2 = divRem, rem = divRem;

assert dividend.equals(rem.copy().add(
quot1.copy().multiply(divider1),
quot2.copy().multiply(divider2)));
}

{
MultivariatePolynomial<BigInteger>[] divRem
= MultivariateDivision.divideAndRemainder(dividend, divider1, divider2, divider3);

MultivariatePolynomial<BigInteger>
quot1 = divRem, quot2 = divRem, quot3 = divRem, rem = divRem;

assert dividend.equals(rem.copy().add(
quot1.copy().multiply(divider1),
quot2.copy().multiply(divider2),
quot3.copy().multiply(divider3)));
}


Important

The resulting array of $$quotients$$ and $$remainder$$ depend on the order of dividers in the array and on the used monomial order. To get a unique result, use Gröbner basis (see Ideals in multivariate polynomial rings).

Full API documentation

#### Multivariate GCD¶

Rings has several algorithms for multivariate GCD:

• BrownGCD
Brown’s GCD for multivariate polynomials over finite fields (see [Brow71], Sec 7.4 in [GeCL92], [Yang09]).
• ZippelGCD
Zippel’s sparse algorithm for multivariate GCD over fields. Works both in case of monic polynomials with fast Vandermonde linear systems (see [Zipp79], [Zipp93]) and in case of non-monic input (LINZIP, see [dKMW05], [Yang09]).
• ZippelGCDInZ
Zippel’s sparse algorithm for multivariate GCD over Z (see [Zipp79], [Zipp93], [dKMW05]) (the same interpolation techniques as in ZippelGCD is used)..
• ModularGCDInZ
Standard modular algorithm (small primes) for GCD over Z.
• KaltofenMonaganSparseModularGCDInGF
Kaltofen’s & Monagan’s generic modular GCD (see [KalM99]) for multivariate polynomials over finite fields with very small cardinality with sparse Zippel’s techniques similar to ZippelGCDInZ
• KaltofenMonaganEEZModularGCDInGF
Kaltofen’s & Monagan’s generic modular GCD (see [KalM99]) for multivariate polynomials over finite fields with very small cardinality with EEZ-GCD used for modular images
• EZGCD
Extended Zassenhaus GCD (EZ-GCD) for multivariate polynomials over finite fields (see Sec. 7.6 in [GeCL92] and [MosY73]).
• EEZGCD
Enhanced Extended Zassenhaus GCD (EEZ-GCD) for multivariate polynomials over finite fields (see [Wang80]).
• ZippelGCDInNumberFieldViaRationalReconstruction and ZippelGCDInNumberFieldViaLangemyrMcCallum
modular algorithms for computing GCD over polynomials over algebraic number fields: the first one uses rational reconstruction approach [Enca95], the second one relies on the strict coefficient bounds obtaines from resultant theory [LaMc89]
• ModularGCDInNumberFieldViaRationalReconstruction and ModularGCDInNumberFieldViaLangemyrMcCallum
sparse Zippel-like interpolation-based modular algorithms for computing GCD over polynomials over algebraic number fields: the first one uses rational reconstruction approach [Enca95], the second one relies on the strict coefficient bounds obtaines from resultant theory [LaMc89]

The upper-level method MultivariateGCD.PolynomialGCD switches between Zippel-like algorithms and EEZ-GCD based algorithms. The latter are used only on a very dense problems (which occur rarely), while the former are actually used in most cases. In case of finite fields of very small cardinality Kaltofen’s & Monagan’s algorithm is used. For algebraic number fields modular (with sparse/dense switch) approach with rational reconstruction is used. Examples:

import rings.poly.multivar.MultivariateGCD._

// some large finite field
val modulus = SmallPrimes.nextPrime(1 << 15)
val ring = MultivariateRingZp64(modulus, Array("x", "y", "z"))

val a = ring("x^2 - x*y + z^5")
val b = ring("x^2 + x*y^7 + x*y*z^2")

val gcd = ring("x + y + z")
val poly1 = a * gcd
val poly2 = b * gcd

// EZGCD in finite field
val ez = EZGCD(poly1, poly2)
assert(ez == gcd)

// EEZGCD in finite field
val eez = EEZGCD[ring.MonomialType, ring.PolyType](poly1, poly2)
assert(eez == gcd)

// ZippelGCD in finite field
val zippel = ZippelGCD(poly1, poly2)
assert(zippel == gcd)

// some very small finite field (Z/2)
val z2 = Zp64(2)
val z2GCD = gcd.setRing(z2)
val z2Poly1 = a.setRing(z2) * z2GCD
val z2Poly2 = b.setRing(z2) * z2GCD

// Kaltofen’s & Monagan’s generic modular GCD
val modGF = ModularGCDInGF(z2Poly1, z2Poly2)
assert(modGF == z2GCD)

// Z
val zGCD = gcd.setRing[IntZ](Z)
val zPoly1 = a.setRing[IntZ](Z) * zGCD
val zPoly2 = b.setRing[IntZ](Z) * zGCD

// Modular GCD in Z with sparse interpolation
val mod = ModularGCD(zPoly1, zPoly2)
assert(mod == zGCD)

// some large finite field
IntegersZp64 zpRing = Zp64(SmallPrimes.nextPrime(1 << 15));
MultivariatePolynomialZp64
a = MultivariatePolynomialZp64.parse("x^2 - x*y + z^5", zpRing),
b = MultivariatePolynomialZp64.parse("x^2 + x*y^7 + x*y*z^2", zpRing);

MultivariatePolynomialZp64
gcd = MultivariatePolynomialZp64.parse("x + y + z", zpRing),
poly1 = a.copy().multiply(gcd),
poly2 = b.copy().multiply(gcd);

// EZGCD in finite field
MultivariatePolynomialZp64 ez = EZGCD(poly1, poly2);
assert ez.equals(gcd);

// EEZGCD in finite field
MultivariatePolynomialZp64 eez = EEZGCD(poly1, poly2);
assert eez.equals(gcd);

// ZippelGCD in finite field
MultivariatePolynomialZp64 zippel = ZippelGCD(poly1, poly2);
assert zippel.equals(gcd);

// some very small finite field (Z/2)
IntegersZp64 z2 = Zp64(2);
MultivariatePolynomialZp64
z2GCD = gcd.setRing(z2),
z2Poly1 = a.setRing(z2).multiply(z2GCD),
z2Poly2 = b.setRing(z2).multiply(z2GCD);

// Kaltofen’s & Monagan’s generic modular GCD
MultivariatePolynomialZp64 modGF = ModularGCDInGF(z2Poly1, z2Poly2);
assert modGF.equals(z2GCD);

// Z
MultivariatePolynomial<BigInteger>
zGCD = gcd.setRing(Z),
zPoly1 = a.setRing(Z).multiply(zGCD),
zPoly2 = b.setRing(Z).multiply(zGCD);

// Modular GCD in Z with sparse interpolation
MultivariatePolynomial<BigInteger> mod = ModularGCD(zPoly1, zPoly2);
assert mod.equals(zGCD);


If one need to calculate GCD of more than two polynomials, it is better to do with PolynomialGCD method which uses efficient algorithm for GCD of array of polynomials instead of sequential gcd of each pair of array elements:

val ring = MultivariateRing(Z, Array("x", "y", "z"))
val (rndDegree, rndSize) = (5, 5)

// some random gcd
val gcd = ring.randomElement(rndDegree, rndSize)
// array of random polynomials which have gcd
val polys = (0 until 10).map(_ => ring.randomElement(rndDegree, rndSize) * gcd)

// fast algorithm for array of polynomials will be used
val fastGCD = PolynomialGCD(polys: _*)
// slow step-by-step gcd calculation
val slowGCD = polys.foldLeft(ring.getZero)((p1, p2) => PolynomialGCD(p1, p2))
// result the same
assert(fastGCD == slowGCD)

MultivariateRing<MultivariatePolynomial<BigInteger>> ring = MultivariateRing(3, Z);
int rndDegree = 5, rndSize = 5;

// some random gcd
MultivariatePolynomial<BigInteger> gcd = ring.randomElement(rndDegree, rndSize);
// array of random polynomials which have gcd
MultivariatePolynomial<BigInteger>[] polys = IntStream.range(0, 10)
.mapToObj(i -> ring.randomElement(rndDegree, rndSize).multiply(gcd))
.toArray(MultivariatePolynomial[]::new);

// fast algorithm for array of polynomials will be used
MultivariatePolynomial<BigInteger> fastGCD = PolynomialGCD(polys);
// slow step-by-step gcd calculation
MultivariatePolynomial<BigInteger> slowGCD = Arrays.stream(polys)
.reduce(ring.getZero(), MultivariateGCD::PolynomialGCD);
// result the same
assert fastGCD.equals(slowGCD);


Full API documentation

#### Multivariate resultants¶

Rings have several algorithms for computing resultants of multivariate polynomials implemented in MultivariateResultants class:

• BrownResultant
a modification of Brown’s multivariate GCD algorithm for computing resultatns
• ZippelResultant
a modification of Zippel’s sparse multivariate GCD algorithm for computing resultatns
• ModularResultantInZ
modular algorithm for computing resultans for polynomials over $$Z$$ and $$Q$$
• ModularResultantInNumberField
modular algorithm for computing resultans for polynomials over algebraic number fields
• Resultant
upper level method which switches between methods listed above depending on the coefficient ring
• Discriminant
computes discriminant of multivariate polynomial

Full API documentation

#### Multivariate factorization¶

Implementation of multivariate factorization in Rings is distributed over two classes:

• MultivariateSquareFreeFactorization
Square-free factorization of multivariate polynomials. In the case of zero characteristic Yun’s algorithm is used (Sec. 14.6 in [GaGe03]), otherwise Musser’s algorithm is used (Sec. 8.3 in [GeCL92], [Muss71]).
• MultivariateFactorization
Implementation of complete factoring algorithms for polynomials over finite fields, $$Z$$, $$Q$$ and $$Q(\alpha)$$. In the case of bivariate polynomials Rings uses fast dense bivariate factorization with naive recombination (see [Bern99], [LeeM13]) (fast irreducibility tests based on Newton polygons are also performed). Factorization algorithm in case of more than two variables is inspired by Kaltofen (see [Kalt85]) and its modified version (see [LeeM13]). Both sparse lifting and fast quasi-dense algorithm due to Bernardin (see [Bern99] and [LeeM13]) are used. For polynomials over algebraic number fields Trager’s algorithm [Trag76] is used.

Multivariate factorization is supported for polynomials in $$F[\mathbf{X}]$$ where $$F$$ is either finite field, $$Z$$, $$Q$$ or other polynomial ring. Examples:

// ring GF(13^5)[x, y, z] (coefficient domain is finite field)
val ringF = MultivariateRing(GF(13, 5), Array("x", "y", "z"))
// generate random poly of degree 5 and size 5
def randomPolyF = ringF.randomElement(5, 5) + 1

// some random polynomial composed from some factors
val polyF = randomPolyF * randomPolyF * randomPolyF.pow(2)
// perform square-free factorization
println(ringF stringify FactorSquareFree(polyF))
// perform complete factorization
println(ringF stringify Factor(polyF))

// ring Q[x, y, z]
val ringQ = MultivariateRing(Q, Array("x", "y", "z"))
// generate random poly of degree 5 and size 5
def randomPolyQ = ringQ.randomElement(5, 5) + 1

// some random polynomial composed from some factors
val polyQ = randomPolyQ * randomPolyQ * randomPolyQ.pow(2)
// perform square-free factorization
println(ringQ stringify FactorSquareFree(polyQ))
// perform complete factorization
println(ringQ stringify Factor(polyQ))

// ring GF(13^5)[x, y, z] (coefficient domain is finite field)
MultivariateRing<MultivariatePolynomial<UnivariatePolynomialZp64>>
ringF = MultivariateRing(3, GF(13, 5));

// generate random poly of degree 5 and size 5
Supplier<MultivariatePolynomial<UnivariatePolynomialZp64>> randomPolyF
= () -> ringF.randomElement(5, 5).increment();

// some random polynomial composed from some factors
MultivariatePolynomial<UnivariatePolynomialZp64> polyF =
randomPolyF.get().multiply(
randomPolyF.get(), ringF.pow(randomPolyF.get(), 2));
// perform square-free factorization
System.out.println(FactorSquareFree(polyF));
// perform complete factorization
System.out.println(Factor(polyF));

// ring Q[x, y, z]
MultivariateRing<MultivariatePolynomial<Rational<BigInteger>>> ringQ = MultivariateRing(3, Q);

Supplier<MultivariatePolynomial<Rational<BigInteger>>> randomPolyQ
= () -> ringQ.randomElement(5, 5).increment();
// some random polynomial composed from some factors
MultivariatePolynomial<Rational<BigInteger>> polyQ =
randomPolyQ.get().multiply(
randomPolyQ.get(), ringQ.pow(randomPolyQ.get(), 2));
// perform square-free factorization
System.out.println(FactorSquareFree(polyQ));
// perform complete factorization
System.out.println(Factor(polyQ));


Full API documentation

#### Multivariate Interpolation¶

Multivariate polynomial interpolation via Newton method can be done in the following way:

import rings.poly.multivar.MultivariateInterpolation._

// ring GF(13^6)[x, y, z]
implicit val ring = MultivariateRing(GF(13, 6, "t"), Array("x", "y", "z"))
val (x, y, z) = ring("x", "y", "z")

// coefficient ring GF(13^6)
val cfRing = ring.cfRing
val t = cfRing("t")
// some points for interpolation
val points: Array[ring.CoefficientType] = {
// hide implicit ring
val ring: Any = null
// enable operations in cfRing
implicit val _ = cfRing
Array(1 + t, 2 + t, 3 + t, 12 + t)
}

// some values for interpolation
val values = Array(x + y, x.pow(2) + y * t, y.pow(3), x.pow(4) * t + y)

// interpolation polynomial values for variable z
val result = new Interpolation(ring.variable("z"), ring)
.update(points, values)
.getInterpolatingPolynomial

assert(points.zipWithIndex.forall { case (point, i) => result("z" -> point) == values(i) })

// ring GF(13^6)[x, y, z]
FiniteField<UnivariatePolynomialZp64> cfRing = GF(13, 6);
MultivariateRing<MultivariatePolynomial<UnivariatePolynomialZp64>>
ring = MultivariateRing(3, cfRing);

UnivariatePolynomialZp64[] points = {
cfRing.parse("1 + t"),
cfRing.parse("2 + t"),
cfRing.parse("3 + t"),
cfRing.parse("12 + t")
};

String[] vars = {"x", "y", "z"};
// some values for interpolation
MultivariatePolynomial[] values = {
ring.parse("x + y", vars),
ring.parse(" x^2 + (t) * y", vars),
ring.parse("y^3", vars),
ring.parse("(t) * x^4 + y", vars)
};

// interpolation polynomial values for variable z
MultivariatePolynomial<UnivariatePolynomialZp64> result =
new MultivariateInterpolation.Interpolation(2, ring)
.update(points, values)
.getInterpolatingPolynomial();

assert IntStream.range(0, points.length)
.allMatch(i -> result.evaluate(2, points[i]).equals(values[i]));


Full API documentation

## Ideals in multivariate polynomial rings¶

The concept of ideal is implemented in the Ideal class which defines basic operations with ideals. Ideal can be created by providing a finite set of polynomial generators. Gröbner basis (see next section) will be computed automatically with respect to specified monomial order. If no any specific monomial order provided, the monomial order of the base ring will be used (in turn, if no any particular order for base ring specified, GREVLEX will be used).

The following methods are available:

Description Java method Scala method
Get computed Groebner basis I.getGroebnerBasis() I.groebnerBasis
Normal form of polynomial I.normalForm(p) I.normalForm(p) or p %% I
Ideal membership I.contains(p) I.contains(p)
Radical of ideal membership I.radicalContains(p) I.radicalContains(p)
Dimension of ideal I.dimension() I.dimension
Degree of ideal I.degree() I.degree
Union of ideals I.union(J) I union J or I + J or I ∪ J
Intersection of ideals I.intersection(J) I intersection J or I ∩ J
Multiplication of ideals I.multiply(J) I * J
Quotient of ideals I.quotient(J) I :/ J
Hilbert-Poincare series I.hilbertSeries() I.hilbertSeries
Ideal of leading terms $$LT(I)$$ I.ltIdeal() I.ltIdeal
Change monomial order I.changeOrder(newOrder) I.changeOrder(newOrder)

Examples:

implicit val ring = MultivariateRingZp64(17, Array("x", "y", "z"))
val (x, y, z) = ring("x", "y", "z")

// create ideal with two generators using GREVLEX monomial order for underlying Groebner basis
val I = Ideal(ring, Seq(x.pow(2) + y.pow(12) - z, x.pow(2) * z + y.pow(2) - 1), GREVLEX)
// I is proper ideal
assert(I.isProper)

// get computed Groebner basis
val gb = I.groebnerBasis
println(gb)

// check some ideal properties
assert(I.dimension == 1)
assert(I.degree == 36)

// create another ideal with only one generator
val J = Ideal(ring, Seq(x.pow(4) * y.pow(4) + 1), GREVLEX)
// J is principal ideal
assert(J.isPrincipal)
assert(J.dimension == 2)
assert(J.degree == 8)

val union = I union J
// union is zero dimensional ideal
assert(union.dimension == 0)
// change order to LEX (elimination order)
val eliminated = union.changeOrder(LEX)
// system can now be solved easily
println(eliminated)

val intersection = I intersection J
// intersection is still 2-dimensional
assert(intersection.dimension == 2)
// multiplication in this case is equal to intersection
val times = I * J
assert(times == intersection)

// yet another ideal
val K = Ideal(ring, Seq(z * x.pow(4) - z * y.pow(14) + y * z.pow(16), (x + y + z).pow(4)), GREVLEX)
// compute complicated quotient ideal
val quot = (I * J * K) :/ times
assert(quot == K)

MultivariateRing<MultivariatePolynomialZp64> ring = MultivariateRingZp64(3, 17);

// create ideal with two generators using GREVLEX monomial order for underlying Groebner basis
Ideal<MonomialZp64, MultivariatePolynomialZp64> I = Ideal.create(Arrays.asList(
ring.parse("x^2 + y^12 - z"),
ring.parse("x^2 * z + y^2 - 1")), GREVLEX);
// I is proper ideal
assert I.isProper();

// get computed Groebner basis
List<MultivariatePolynomialZp64> gb = I.getGroebnerBasis();
System.out.println(gb);

// check some ideal properties
assert I.dimension() == 1;
assert I.degree() == 36;

// create another ideal with only one generator
Ideal<MonomialZp64, MultivariatePolynomialZp64> J = Ideal.create(Arrays.asList(
ring.parse("x^4 * y^4 + 1")), GREVLEX);
// J is principal ideal
assert J.isPrincipal();
assert J.dimension() == 2;
assert J.degree() == 8;

Ideal<MonomialZp64, MultivariatePolynomialZp64> union = I.union(J);
// union is zero dimensional ideal
assert union.dimension() == 0;
// change order to LEX (elimination order)
Ideal<MonomialZp64, MultivariatePolynomialZp64> eliminated = union.changeOrder(LEX);
// system can now be solved easily
System.out.println(eliminated);

Ideal<MonomialZp64, MultivariatePolynomialZp64> intersection = I.intersection(J);
// intersection is still 2-dimensional
assert intersection.dimension() == 2;
// multiplication in this case is equal to intersection
Ideal<MonomialZp64, MultivariatePolynomialZp64> times = I.multiply(J);
assert times.equals(intersection);

// yet another ideal
Ideal<MonomialZp64, MultivariatePolynomialZp64> K = Ideal.create(Arrays.asList(
ring.parse("z * x^4 - z * y^14 + y * z^16"),
ring.pow(ring.parse("x + y + z"), 4)), GREVLEX);
// compute complicated quotient ideal
Ideal<MonomialZp64, MultivariatePolynomialZp64> quot = (I.multiply(J).multiply(K)).quotient(times);
assert quot.equals(K);


The normal form operation is used to contstruct qotient rings. It is equivalent to taking a remainder of multivariate division of polynomial by a Gröbner basis of the ideal. The monomial order used to perform that division is the order which was used to compute Gröbner basis of ideal:

// base ring in LEX order
implicit val ring = MultivariateRing(Q, Array("x", "y", "z", "t"), LEX)
val (x, y, z, t) = ring("x", "y", "z", "t")

// some polynomial in a base ring order (LEX)
val poly = x + (y^2) * z + (z^3) * y * t + (t^4) * z * y
assert(poly.ordering == LEX)

// some ideal with Groebner basis computed in GREVLEX
val idealGrevLex = Ideal(ring,
Seq(y * (x^3) + z * (t^3) - 1,
x * y - y * z - z * x + (t^3)),
GREVLEX)
assert(idealGrevLex.ordering == GREVLEX)

// normal form of poly will be computed with respect to GREVLEX
// then the result will be re-sorted according to the base ring order (LEX)
val nfGrevLex = poly %% idealGrevLex
assert(nfGrevLex.ordering == LEX)

// the same ideal with Groebner basis in LEX order
val idealLex = idealGrevLex.changeOrder(LEX)
assert(idealLex.ordering == LEX)

// normal form of poly will be computed with respect to LEX
val nfLex = poly %% idealLex
assert(nfLex.ordering == LEX)

// Normal forms computed against LEX basis and GREVLEX basis
// are different (although both polynomials are sorted in LEX)
assert(nfGrevLex != nfLex)

// base ring in LEX order
MultivariateRing<MultivariatePolynomial<Rational<BigInteger>>> ring = MultivariateRing(4, Q, LEX);
String[] variables = {"x", "y", "z", "t"};

// some polynomial in a base ring order (LEX)
MultivariatePolynomial<Rational<BigInteger>> poly =
ring.parse("x + y^2 * z + z^3 * y * t + t^4 * z * y", variables);
assert poly.ordering == LEX;

// some ideal with Groebner basis computed in GREVLEX
Ideal<Monomial<Rational<BigInteger>>, MultivariatePolynomial<Rational<BigInteger>>>
idealGrevLex = Ideal.create(Arrays.asList(
ring.parse("y * x^3 + z * t^3 - 1", variables),
ring.parse("x * y - y * z - z * x + t^3", variables)),
GREVLEX);
assert idealGrevLex.ordering == GREVLEX;

// normal form of poly will be computed with respect to GREVLEX
// then the result will be re-sorted according to the base ring order (LEX)
MultivariatePolynomial<Rational<BigInteger>> nfGrevLex = idealGrevLex.normalForm(poly);
assert nfGrevLex.ordering == LEX;

// the same ideal with Groebner basis in LEX order
Ideal<Monomial<Rational<BigInteger>>, MultivariatePolynomial<Rational<BigInteger>>>
idealLex = idealGrevLex.changeOrder(LEX);
assert idealLex.ordering == LEX;

// normal form of poly will be computed with respect to LEX
MultivariatePolynomial<Rational<BigInteger>> nfLex = idealLex.normalForm(poly);
assert nfLex.ordering == LEX;

// Normal forms computed against LEX basis and GREVLEX basis
// are different (although both polynomials are sorted in LEX)
assert !nfGrevLex.equals(nfLex);


Important

If the coefficient ring $$R$$ of a base ring is not a field, Rings will “effectively” perform all operations with coefficients as in the field of fractions $$Frac(R)$$. Thus, in Rings ideals in $$Z[x_1, \dots, x_N]$$ are actually treated as ideals in $$Q[x_1, \dots, x_N]$$.

Full API documentation

### Hilbert-Poincare series¶

The Hilbert-Poincare series of ideal in the $$N$$-variate polynomial ring $$S = R[x_1, \dots, x_N]$$ has the following form:

$HPS_{S/I}(t) = \frac{N_1(t)}{(1 - t)^N} = \frac{N_2(t)}{(1 - t)^d}$

where the last equality is obtained by cancellation of common $$(1 - t)$$ factors from numerator and denominator. We’ll refer the latter form of Hilbert-Poincare series as reduced form. Dimension and degree of ideal are easily computable from its reduced Hilbert-Poincare series: dimension of ideal equal to the degree of denominator and degree of ideal equal to $$N_2(1)$$.

Hilbert series of ideal can be obtained by the I.hilbertSeries() method. The return object has the following properties:

Description Java/Scala method
Initial numerator $$N_1(t)$$ hps.initialNumerator
Reduced numerator $$N_2(t)$$ hps.numerator
Dimension of ideal hps.dimension()
Degree of ideal hps.degree()
Hilbert polynomial $$HP(m) \in Q[m]$$ hps.hilbertPolynomial()
Integer Hilbert polynomial $$HP_Z(m) = (\mbox{dim} - 1)! \times HP(m)$$ hps.hilbertPolynomialZ()

Examples:

implicit val ring = MultivariateRingZp64(32003, Array("x", "y", "z"))
val (x, y, z) = ring("x", "y", "z")

// some ideal
val ideal = Ideal(ring, Seq(x.pow(2), y.pow(2), z.pow(2)))
// get Hilbert-Poincare series
val hps = ideal.hilbertSeries

assert(hps.dimension == 0)
assert(hps.degree == 8)

// series numerator
println(hps.initialNumerator)
// reduced series numerator
println(hps.numerator)

// integer Hilbert polynomial
println(hps.hilbertPolynomialZ)
// rational Hilbert polynomial
println(hps.hilbertPolynomial)

MultivariateRing<MultivariatePolynomialZp64> ring = MultivariateRingZp64(3, 32003);
Ideal<MonomialZp64, MultivariatePolynomialZp64> ideal
= Ideal.create(Arrays.asList(
ring.parse("x^2"),
ring.parse("y^2"),
ring.parse("z^2")));
// get Hilbert-Poincare series
HilbertSeries hps = ideal.hilbertSeries();

assert hps.dimension() == 0;
assert hps.degree() == 8;

// series numerator
System.out.println(hps.initialNumerator);
// reduced series numerator
System.out.println(hps.numerator);

// integer Hilbert polynomial
System.out.println(hps.hilbertPolynomialZ());
// rational Hilbert polynomial
System.out.println(hps.hilbertPolynomial());


Hilbert-Poincare series of ideal is computed with algorithm describerd in [Trav96]. If the ideal $$I$$ is represented by its Gröbner basis in graded order or is homoheneous, then Hilbert series of leading terms ideal is computed, otherwise some “easy” graded Gröbner basis is computed first.

### Gröbner bases algorithms¶

Rings uses different algorithms for computing Gröbner bases of ideals depending on monomial order and coefficient ring used. They are the following:

• In all algorithms the Gebauer-Moller installation [GebM88], [BecW93] of Buchberger criteria is used
• Gröbner bases in finite fields for graded orders are computed with the use of Faugere’s F4 algorithm [Faug99] with fast sparse linear algebra [FauL10] and simplification algorithm due to [JouV11]
• Gröbner bases for non graded orders are first computed with respect to some graded order and then the order is changed with the use of Hilbert-driven methods [Trav96] (with optional use of homogenezation-dehomogenezation steps)
• Gröbner bases in $$Z$$ (resp. $$Q$$) may either use F4 or Buchbeger algorithms directly or, in some cases, switch to modular algorithm [Arno03] (especially for small number of indeterminates)
• If the Hilbert-Poincare series of ideal is known in advance, Hilbert-driven algorithm [Trav96], [CLOS97] will be used
• If non of the above cases apply, the plain Buchberger algorithm [Buch76], [BecW93], [CLOS97] is used
• Plain Buchberger algorithm may use either normal selection strategy (for graded orders) or sugar strategy (e.g. for lexicographic order) [GMNR88]

There is no any general way to select the best algorithm a priori, so the default choise of the algorithm may not be optimal. For example, in some cases for polynomials over $$Q$$ Buchberger or F4 algorithms may be tremendously slow, while modular algorithm is very fast, while in other, no more rare cases, modular algorithm may be dramatically slower than plain Buchberger. So, the general advice for complicated ideals is to try different algorithms when the default method is slow.

All algorithms are available from GroebnerBases class:

// some ideal in Z[x,y,z] with very simple Groebner basis
String[] vars = {"x", "y", "z"};
MultivariatePolynomial<BigInteger>
a = parse("8*x^2*y^2 + 5*x*y^3 + 3*x^3*z + x^2*y*z", Z, vars),
b = parse("x^5 + 2*y^3*z^2 + 13*y^2*z^3 + 5*y*z^4", Z, vars),
c = parse("8*x^3 + 12*y^3 + x*z^2 + 3", Z, vars),
d = parse("7*x^2*y^4 + 18*x*y^3*z^2 + y^3*z^3", Z, vars);
List<MultivariatePolynomial<BigInteger>> gens = Arrays.asList(a, b, c, d);

// The default method will use modular algorithm in this case
List<MultivariatePolynomial<BigInteger>> gb = GroebnerBases.GroebnerBasis(gens, GREVLEX);
// Groebner bases is very simple: <x, z^2, 1 + 4*y^3>
System.out.println(gb);

// Modular algorithm will take few milliseconds
List<MultivariatePolynomial<BigInteger>> mod = GroebnerBases.ModularGB(gens, GREVLEX);
assert mod.equals(gb);

// F4 algorithm will also take few milliseconds
List<MultivariatePolynomial<BigInteger>> f4 = GroebnerBases.F4GB(gens, GREVLEX);
assert f4.equals(gb);

// But Buchberger algorithm will take several minutes
// because of intermediate expression swell
List<MultivariatePolynomial<BigInteger>> buch = GroebnerBases.BuchbergerGB(gens, GREVLEX);
assert buch.equals(gb);


Full API documentation